On the multivariate Husler-Reiss distribution attracting the maxima of elliptical triangular arrays

被引:15
作者
Hashorva, Enkelejd
机构
[1] Univ Bern, Dept Math Stat & Actuarial Sci, CH-3012 Bern, Switzerland
[2] Allianz Suisse Insurance Co, CH-3001 Bern, Switzerland
关键词
maxima of triangular arrays; multivariate elliptical distribution; multivariate Husler-Reiss distribution; Gumbel max-domain of attraction; weak convergence;
D O I
10.1016/j.spl.2006.05.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-ln((j)), ..., X-dn((j))), n >= 1, 1 <= j <= n, be a triangular array of independent elliptical random vectors in R-d, d >= 2. In this paper we investigate the asymptotic behaviour of the multivariate maxima of this triangular array. Generalising previous results for the bivariate set-up, we show that the normalised maxima of this elliptical triangular array is attracted by the multivariate Husler-Reiss distribution function provided that the components of the triangular array become asymptotically dependent with a specific rate, and further the random radius pertaining to the elliptical random vectors is in the Gumbel max-domain of attraction. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2027 / 2035
页数:9
相关论文
共 18 条
[1]  
Berman M.S., 1992, SOJOURNS EXTREMES ST
[2]   ON THE THEORY OF ELLIPTICALLY CONTOURED DISTRIBUTIONS [J].
CAMBANIS, S ;
HUANG, S ;
SIMONS, G .
JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (03) :368-385
[3]  
de Haan, 1970, REGULAR VARIATION IT
[4]   On Pickands coordinates in arbitrary dimensions [J].
Falk, M ;
Reiss, RD .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 92 (02) :426-453
[5]  
FALK M, 2004, DMV SEM, V23
[6]  
Fang K -T., 1990, SYMMETRIC MULTIVARIA
[7]  
Galambos J, 1987, ASYMPTOTIC THEORY EX
[8]   Extremes of asymptotically spherical and elliptical random vectors [J].
Hashorva, E .
INSURANCE MATHEMATICS & ECONOMICS, 2005, 36 (03) :285-302
[9]   Elliptical triangular arrays in the max-domain of attraction of Husler-Reiss distribution [J].
Hashorva, E .
STATISTICS & PROBABILITY LETTERS, 2005, 72 (02) :125-135
[10]  
HASHORVA E, 2006, IN PRESS STOCHASTIC, V17