Impact of nucleation on global CCN

被引:614
作者
Merikanto, J. [1 ]
Spracklen, D. V. [1 ]
Mann, G. W. [1 ]
Pickering, S. J. [1 ]
Carslaw, K. S. [1 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England
基金
芬兰科学院;
关键词
CLOUD CONDENSATION NUCLEI; RESOLVED AEROSOL MICROPHYSICS; ATMOSPHERIC SULFURIC-ACID; CLIMATE MODEL ECHAM5-HAM; OFF-LINE MODEL; PARTICLE FORMATION; TROPOSPHERIC AEROSOLS; ULTRAFINE PARTICLES; BOUNDARY-LAYER; GROWTH-RATES;
D O I
10.5194/acp-9-8601-2009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cloud condensation nuclei (CCN) are derived from particles emitted directly into the atmosphere (primary emissions) or from the growth of nanometer-sized particles nucleated in the atmosphere. It is important to separate these two sources because they respond in different ways to gas and particle emission control strategies and environmental changes. Here, we use a global aerosol microphysics model to quantify the contribution of primary and nucleated particles to global CCN. The model considers primary emissions of sea spray, sulfate and carbonaceous particles, and nucleation processes appropriate for the free troposphere and boundary layer. We estimate that 45% of global low-level cloud CCN at 0.2% supersaturation are secondary aerosol derived from nucleation (ranging between 31-49% taking into account uncertainties in primary emissions and nucleation rates), with the remainder from primary emissions. The model suggests that 35% of CCN (0.2%) in global low-level clouds were created in the free and upper troposphere. In the marine boundary layer 55% of CCN (0.2%) are from nucleation, with 45% entrained from the free troposphere and 10% nucleated directly in the boundary layer. Combinations of model runs show that primary and nucleated CCN are non-linearly coupled. In particular, boundary layer nucleated CCN are strongly suppressed by both primary emissions and entrainment of particles nucleated in the free troposphere. Elimination of all primary emissions reduces global CCN (0.2%) by only 20% and elimination of upper tropospheric nucleation reduces CCN (0.2%) by only 12% because of the increased contribution from boundary layer nucleation.
引用
收藏
页码:8601 / 8616
页数:16
相关论文
共 67 条
[1]   Predicting global aerosol size distributions in general circulation models [J].
Adams, PJ ;
Seinfeld, JH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D19) :AAC4-1
[2]   A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber [J].
Alfarra, M. R. ;
Paulsen, D. ;
Gysel, M. ;
Garforth, A. A. ;
Dommen, J. ;
Prevot, A. S. H. ;
Worsnop, D. R. ;
Baltensperger, U. ;
Coe, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :5279-5293
[3]   Global gridded inventories of anthropogenic emissions of sulfur and nitrogen [J].
Benkovitz, CM ;
Scholtz, MT ;
Pacyna, J ;
Tarrason, L ;
Dignon, J ;
Voldner, EC ;
Spiro, PA ;
Logan, JA ;
Graedel, TE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D22) :29239-29253
[4]   The effects of airmass history on new particle formation in the free troposphere: case studies [J].
Benson, D. R. ;
Young, Li-Hao ;
Lee, Shan-Hu ;
Campos, T. L. ;
Rogers, D. C. ;
Jensen, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (12) :3015-3024
[5]   A technology-based global inventory of black and organic carbon emissions from combustion [J].
Bond, TC ;
Streets, DG ;
Yarber, KF ;
Nelson, SM ;
Woo, JH ;
Klimont, Z .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D14) :D14203
[6]   How biogenic terpenes govern the correlation between sulfuric acid concentrations and new particle formation [J].
Bonn, B. ;
Kulmala, M. ;
Riipinen, I. ;
Sihto, S. -L. ;
Ruuskanen, T. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D12)
[7]   New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments [J].
Chipperfield, M. P. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2006, 132 (617) :1179-1203
[8]   An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere [J].
Clarke, AD ;
Owens, SR ;
Zhou, JC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D6)
[9]   Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom [J].
Dentener, F. ;
Kinne, S. ;
Bond, T. ;
Boucher, O. ;
Cofala, J. ;
Generoso, S. ;
Ginoux, P. ;
Gong, S. ;
Hoelzemann, J. J. ;
Ito, A. ;
Marelli, L. ;
Penner, J. E. ;
Putaud, J. -P. ;
Textor, C. ;
Schulz, M. ;
van der Werf, G. R. ;
Wilson, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :4321-4344
[10]   Aerosol-cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign [J].
Fountoukis, Christos ;
Nenes, Athanasios ;
Meskhidze, Nicholas ;
Bahreini, Roya ;
Conant, William C. ;
Jonsson, Haflidi ;
Murphy, Shane ;
Sorooshian, Armin ;
Varutbangkul, Varuntida ;
Brechtel, Fred ;
Flagan, Richard C. ;
Seinfeld, John H. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)