Small noise expansion of moment Lyapunov exponents for two-dimensional systems

被引:72
作者
Arnold, L [1 ]
Doyle, MM [1 ]
Namachchivaya, NS [1 ]
机构
[1] UNIV ILLINOIS,DEPT AERONAUT & ASTRONAUT ENGN,NONLINEAR SYST GRP,URBANA,IL 61801
来源
DYNAMICS AND STABILITY OF SYSTEMS | 1997年 / 12卷 / 03期
关键词
D O I
10.1080/02681119708806244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct an approximation for the moment Lyapunov exponent, the asymptotic growth rate of the moments of the response of a two-dimensional linear system driven by real or white noise. A perturbation approach is used to obtain explicit expressions for these exponents in the presence of small intensity noise. As an example, we study the moment stability of the stationary solution of nonlinear structural and mechanical systems subjected to real noise excitation. The usefulness of the moment Lyapunov exponent in predicting parameter values at which qualitative changes in the probability density function occur (stochastic bifurcation) is also illustrated.
引用
收藏
页码:187 / 211
页数:25
相关论文
共 25 条
[1]  
ARIARATNAM ST, 1988, DYNAMICAL SYSTEMS AP, P39
[3]   LYAPUNOV EXPONENTS OF LINEAR STOCHASTIC-SYSTEMS [J].
ARNOLD, L ;
KLIEMANN, W ;
OELJEKLAUS, E .
LECTURE NOTES IN MATHEMATICS, 1986, 1186 :85-125
[4]  
ARNOLD L, 1987, LECT NOTES CONTR INF, V96, P117
[5]   ALMOST SURE AND MOMENT STABILITY FOR LINEAR ITO EQUATIONS [J].
ARNOLD, L ;
OELJEKLAUS, E ;
PARDOUX, E .
LECTURE NOTES IN MATHEMATICS, 1986, 1186 :129-159
[6]   ASYMPTOTIC ANALYSIS OF THE LYAPUNOV EXPONENT AND ROTATION NUMBER OF THE RANDOM OSCILLATOR AND APPLICATIONS [J].
ARNOLD, L ;
PAPANICOLAOU, G ;
WIHSTUTZ, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (03) :427-450
[7]  
Arnold L., 1998, RANDOM DYNAMICAL SYS, DOI DOI 10.1007/BFB0095238
[8]  
Arnold L., 1986, LECT NOTES MATH, V1186
[9]   LARGE DEVIATIONS AND STOCHASTIC FLOWS OF DIFFEOMORPHISMS [J].
BAXENDALE, PH ;
STROOCK, DW .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (02) :169-215
[10]  
BAXENDALE PH, 1990, LECT NOTES MATH, V1486, P123