Response of microbial community composition and function to soil climate change

被引:89
作者
Waldrop, M. P. [1 ]
Firestone, M. K. [1 ]
机构
[1] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
关键词
D O I
10.1007/s00248-006-9103-3
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Soil microbial communities mediate critical ecosystem carbon and nutrient cycles. How microbial communities will respond to changes in vegetation and climate, however, are not well understood. We reciprocally transplanted soil cores from under oak canopies and adjacent open grasslands in a California oak-grassland ecosystem to determine how microbial communities respond to changes in the soil environment and the potential consequences for the cycling of carbon. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid analysis (PLFA), microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups by quantifying C-13 uptake from a universal substrate (pyruvate) into PLFA biomarkers. Soil in the open grassland experienced higher maximum temperatures and lower soil water content than soil under the oak canopies. Soil microbial communities in soil under oak canopies were more sensitive to environmental change than those in adjacent soil from the open grassland. Oak canopy soil communities changed rapidly when cores were transplanted into the open grassland soil environment, but grassland soil communities did not change when transplanted into the oak canopy environment. Similarly, microbial biomass, enzyme activities, and microbial respiration decreased when microbial communities were transplanted from the oak canopy soils to the grassland environment, but not when the grassland communities were transplanted to the oak canopy environment. These data support the hypothesis that microbial community composition and function is altered when microbes are exposed to new extremes in environmental conditions; that is, environmental conditions outside of their "life history" envelopes.
引用
收藏
页码:716 / 724
页数:9
相关论文
共 35 条
[1]  
Abraham WR, 1998, APPL ENVIRON MICROB, V64, P4202
[2]  
Allen MF., 1995, GLOBAL CHANGE MEDITE, P287, DOI DOI 10.1007/978-1-4612-4186-7_14
[3]   In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into soil phospholipid fatty acids from 13C acetate [J].
Arao, T .
SOIL BIOLOGY & BIOCHEMISTRY, 1999, 31 (07) :1015-1020
[4]   Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest [J].
Balser, TC ;
Firestone, MK .
BIOGEOCHEMISTRY, 2005, 73 (02) :395-415
[5]   Below-ground microbial community development in a high temperature world [J].
Bardgett, RD ;
Kandeler, E ;
Tscherko, D ;
Hobbs, PJ ;
Bezemer, TM ;
Jones, TH ;
Thompson, LJ .
OIKOS, 1999, 85 (02) :193-203
[6]   FEEDBACK BETWEEN PLANTS AND THEIR SOIL COMMUNITIES IN AN OLD FIELD COMMUNITY [J].
BEVER, JD .
ECOLOGY, 1994, 75 (07) :1965-1977
[7]   Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles [J].
Bossio, DA ;
Scow, KM ;
Gunapala, N ;
Graham, KJ .
MICROBIAL ECOLOGY, 1998, 36 (01) :1-12
[8]   IMPACT OF CARBON AND FLOODING ON THE METABOLIC DIVERSITY OF MICROBIAL COMMUNITIES IN SOILS [J].
BOSSIO, DA ;
SCOW, KM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (11) :4043-4050
[9]   Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field [J].
Broughton, LC ;
Gross, KL .
OECOLOGIA, 2000, 125 (03) :420-427
[10]   The structure of microbial communities in soil and the lasting impact of cultivation [J].
Buckley, DH ;
Schmidt, TM .
MICROBIAL ECOLOGY, 2001, 42 (01) :11-21