Tokamak profile prediction using direct gyrokinetic and neoclassical simulation

被引:200
作者
Candy, J. [1 ]
Holland, C. [2 ]
Waltz, R. E. [1 ]
Fahey, M. R. [3 ]
Belli, E. [1 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
TRANSPORT; DYNAMICS;
D O I
10.1063/1.3167820
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Tokamak transport modeling scenarios, including ITER [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)] performance predictions, are based exclusively on reduced models for core thermal and particle transport. The reason for this is simple: computational cost. A typical modeling scenario may require the evaluation of thousands of individual transport fluxes (local transport models calculate the energy and particle fluxes across a specified flux surface given fixed profiles). Despite continuous advances in direct gyrokinetic simulation, the cost of an individual simulation remains so high that direct gyrokinetic transport calculations have been avoided. By developing a steady-state iteration scheme suitable for direct gyrokinetic and neoclassical simulations, we can now compute steady-state temperature profiles for DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas given known plasma sources. The new code, TGYRO, encapsulates the GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] code, for turbulent transport, and the NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 50, 095010 (2008)] code, for kinetic neoclassical transport. Results for DIII-D L-mode discharge 128913 are given, with computational and experimental results consistent in the region 0 <= r/a <= 0.8. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3167820]
引用
收藏
页数:4
相关论文
共 11 条
[1]   Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
[2]   The effect of ion-scale dynamics on electron-temperature-gradient turbulence [J].
Candy, J. ;
Waltz, R. E. ;
Fahey, M. R. ;
Holland, C. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (08) :1209-1220
[3]   An Eulerian gyrokinetic-Maxwell solver [J].
Candy, J ;
Waltz, RE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :545-581
[4]   Gyrokinetic turbulent heating [J].
Hinton, F. L. ;
Waltz, R. E. .
PHYSICS OF PLASMAS, 2006, 13 (10)
[5]   Validating simulations of core tokamak turbulence: Current status and future directions [J].
Holland, C. ;
Candy, J. ;
Waltz, R. E. ;
White, A. E. ;
McKee, G. R. ;
Shafer, M. W. ;
Schmitz, L. ;
Tynan, G. R. .
SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
[6]   Studies of turbulence and transport in Alcator C-Mod H-mode plasmas with phase contrast imaging and comparisons with GYRO [J].
Lin, L. ;
Porkolab, M. ;
Edlund, E. M. ;
Rost, J. C. ;
Fiore, C. L. ;
Greenwald, M. ;
Lin, Y. ;
Mikkelsen, D. R. ;
Tsujii, N. ;
Wukitch, S. J. .
PHYSICS OF PLASMAS, 2009, 16 (01)
[7]   A design retrospective of the DIII-D tokamak [J].
Luxon, JL .
NUCLEAR FUSION, 2002, 42 (05) :614-633
[8]   The dynamics of marginality and self-organized criticality as a paradigm turbulent transport [J].
Newman, DE ;
Carreras, BA ;
Diamond, PH ;
Hahm, TS .
PHYSICS OF PLASMAS, 1996, 3 (05) :1858-1866
[9]  
Wakatani M, 1999, NUCL FUSION, V39, P2175, DOI 10.1088/0029-5515/39/12/302
[10]   Gyrokinetic theory and simulation of turbulent energy exchange [J].
Waltz, R. E. ;
Staebler, G. M. .
PHYSICS OF PLASMAS, 2008, 15 (01)