First direct observation of Dirac fermions in graphite

被引:460
作者
Zhou, S. Y. [1 ]
Gweon, G. -H.
Graf, J.
Fedorov, A. V.
Spataru, C. D.
Diehl, R. D.
Kopelevich, Y.
Lee, D. -H.
Louie, Steven G.
Lanzara, A.
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA
[5] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[6] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[7] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphys393
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Originating from relativistic quantum field theory, Dirac fermions have been invoked recently to explain various peculiar phenomena in condensed-matter physics, including the novel quantum Hall effect in graphene(1,2), the magnetic-field-driven metal - insulator-like transition in graphite(3,4), super. uidity in He-3 ( ref. 5) and the exotic pseudogap phase of high-temperature superconductors(6,7). Despite their proposed key role in those systems, direct experimental evidence of Dirac fermions has been limited. Here, we report the first direct observation of relativistic Dirac fermions with linear dispersion near the Brillouin zone (BZ) corner H, which coexist with quasiparticles that have a parabolic dispersion near another BZ corner K. In addition, we also report a large electron pocket that we attribute to defect-induced localized states. Thus, graphite presents a system in which massless Dirac fermions, quasiparticles with finite effective mass and defect states all contribute to the low-energy electronic dynamics.
引用
收藏
页码:595 / 599
页数:5
相关论文
共 26 条
  • [1] 1ST-PRINCIPLES STUDY OF THE ELECTRONIC-PROPERTIES OF GRAPHITE
    CHARLIER, JC
    GONZE, X
    MICHENAUD, JP
    [J]. PHYSICAL REVIEW B, 1991, 43 (06): : 4579 - 4589
  • [2] INTERCALATION COMPOUNDS OF GRAPHITE
    DRESSELHAUS, MS
    DRESSELHAUS, G
    [J]. ADVANCES IN PHYSICS, 1981, 30 (02) : 139 - 326
  • [3] Metal-insulator-like behavior in semimetallic bismuth and graphite
    Du, X
    Tsai, SW
    Maslov, DL
    Hebard, AF
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (16)
  • [4] Algebraic Fermi liquid from phase fluctuations:: "Topological" fermions, vortex "Berryons," and QED3 theory of cuprate superconductors -: art. no. 257003
    Franz, M
    Tesanovic, Z
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (25) : 257003 - 1
  • [5] CYCLOTRON RESONANCE EFFECTS IN GRAPHITE
    GALT, JK
    YAGER, WA
    DAIL, HW
    [J]. PHYSICAL REVIEW, 1956, 103 (05): : 1586 - 1587
  • [6] Unconventional quasiparticle lifetime in graphite
    Gonzalez, J
    Guinea, F
    Vozmediano, MAH
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (17) : 3589 - 3592
  • [8] Hufner S., 1995, Photoelectron Spectroscopy, VVolume 82
  • [9] Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy
    Kobayashi, Y
    Fukui, K
    Enoki, T
    Kusakabe, K
    Kaburagi, Y
    [J]. PHYSICAL REVIEW B, 2005, 71 (19)
  • [10] Reentrant metallic behavior of graphite in the quantum limit
    Kopelevich, Y
    Torres, JHS
    da Silva, RR
    Mrowka, F
    Kempa, H
    Esquinazi, P
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (15) : 4