Improving the power efficiency of white light-emitting diode by doping electron transport material

被引:81
作者
Huang, Jinsong [1 ]
Hou, Wei-Jen [1 ]
Li, Juo-Hao [1 ]
Li, Gang [1 ]
Yang, Yang [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2357938
中图分类号
O59 [应用物理学];
学科分类号
摘要
Highly efficient white light emission was realized via the partial energy transfer from blue host polyfluorene (PF) to orange light emission dopant rubrene. A more balanced charge transport was achieved by adding an electron transport material, 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), into the PF-rubrene system to enhance the electron transportation. Efficiency improvement by as much as a factor of 2 has been observed through the addition of PBD. These devices can easily reach high luminance at low driving voltages, thus achieving high power efficiency at high luminance (14.8, 13.5, and 12.0 lm/W at the luminances of 1000, 2000, and 4000 cd/m(2), respectively). Therefore, this performance is an important approach toward solid-state lighting application. The enhancement is mainly attributed to three factors: increased electron transport property of the host material, increased photoluminescence quantum efficiency, and the shifting of emission zone away from cathode contact. The reported efficiency is among the highest values reported in the white emission polymer light-emitting diodes. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 23 条
[1]   ORGANIC ELECTROLUMINESCENT DEVICE HAVING A HOLE CONDUCTOR AS AN EMITTING LAYER [J].
ADACHI, C ;
TSUTSUI, T ;
SAITO, S .
APPLIED PHYSICS LETTERS, 1989, 55 (15) :1489-1491
[2]   Quantifying the efficiency of electrodes for positive carrier injection into poly(9,9-dioctylfluorene) and representative copolymers [J].
Campbell, AJ ;
Bradley, DDC ;
Antoniadis, H .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (06) :3343-3351
[3]   The effect of interfacial layer on the performance of organic light-emitting diodes [J].
Choulis, SA ;
Choong, VE ;
Mathai, MK ;
So, F .
APPLIED PHYSICS LETTERS, 2005, 87 (11)
[4]   Highly-bright white organic light-emitting diodes based on a single emission layer [J].
Chuen, CH ;
Tao, YT .
APPLIED PHYSICS LETTERS, 2002, 81 (24) :4499-4501
[5]   Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer [J].
D'Andrade, BW ;
Holmes, RJ ;
Forrest, SR .
ADVANCED MATERIALS, 2004, 16 (07) :624-+
[6]   Multilayer polymer light-emitting diodes: White-light emission with high efficiency [J].
Gong, X ;
Wang, S ;
Moses, D ;
Bazan, GC ;
Heeger, AJ .
ADVANCED MATERIALS, 2005, 17 (17) :2053-+
[7]   MEASUREMENT OF ABSOLUTE PHOTOLUMINESCENCE QUANTUM EFFICIENCIES IN CONJUGATED POLYMERS [J].
GREENHAM, NC ;
SAMUEL, IDW ;
HAYES, GR ;
PHILLIPS, RT ;
KESSENER, YARR ;
MORATTI, SC ;
HOLMES, AB ;
FRIEND, RH .
CHEMICAL PHYSICS LETTERS, 1995, 241 (1-2) :89-96
[8]   Achieving high-efficiency polymer white-light-emitting devices [J].
Huang, JS ;
Li, G ;
Wu, E ;
Xu, QF ;
Yang, Y .
ADVANCED MATERIALS, 2006, 18 (01) :114-117
[9]   Triplet energy exchange between fluorescent and phosphorescent organic molecules in a solid state matrix [J].
Kalinowski, J ;
Stampor, W ;
Cocchi, M ;
Virgili, D ;
Fattori, V ;
Di Marco, P .
CHEMICAL PHYSICS, 2004, 297 (1-3) :39-48
[10]   MULTILAYER WHITE LIGHT-EMITTING ORGANIC ELECTROLUMINESCENT DEVICE [J].
KIDO, J ;
KIMURA, M ;
NAGAI, K .
SCIENCE, 1995, 267 (5202) :1332-1334