Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2

被引:138
作者
Soupene, E [1 ]
Inwood, W [1 ]
Kustu, S [1 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1073/pnas.0401809101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although Rhesus (Rh) proteins are best known as antigens on human red blood cells, they are not restricted to red cells or to mammals, and hence their primary biochemical functions can be studied in more tractable organisms. We previously established that the Rh1 protein of the green alga Chlamydomonas reinhardtii is highly expressed in cultures bubbled with air containing high CO2 (3%), conditions under which Chlamydomonas grows rapidly. By RNA interference, we have now obtained Chlamydomonas rh mutants (epigenetic), which are among the first in nonhuman cells. These mutants have essentially no mRNA or protein for RH1 and grow slowly at high CO2, apparently because they fail to equilibrate this gas rapidly. They grow as well as their parental strain in air and on acetate plus air. However, during growth on acetate, rh1 mutants fail to express three proteins that are known to be down-regulated by high CO2: periplasmic and mitochondrial carbonic anhydrases and a chloroplast envelope protein. This effect is parsimoniously rationalized if the small amounts of Rh1 protein present in acetate-grown cells of the parental strain facilitate leakage of CO2 generated internally. Together, these results support our hypothesis that the Rh1 protein is a bidirectional channel for the gas CO2. Our previous studies in a variety of organisms indicate that the only other members of the Rh superfamily, the ammonium/methylammonium transport proteins, are bidirectional channels for the gas NH3. Physiologically, both types of gas channels can apparently function in acquisition of nutrients and/or waste disposal.
引用
收藏
页码:7787 / 7792
页数:6
相关论文
共 55 条
[1]   MOLECULAR-BIOLOGY OF THE RH ANTIGENS [J].
AGRE, P ;
CARTRON, JP .
BLOOD, 1991, 78 (03) :551-563
[2]   The Rh blood group system: a review [J].
Avent, ND ;
Reid, ME .
BLOOD, 2000, 95 (02) :375-387
[3]   THE ROLE OF CARBONIC-ANHYDRASE IN PHOTOSYNTHESIS [J].
BADGER, MR ;
PRICE, GD .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1994, 45 :369-392
[4]  
BALLAS SK, 1984, BLOOD, V63, P1046
[5]   Coexpression of band 3 mutants and Rh polypeptides: differential effects of band 3 on the expression of the Rh complex containing D polypeptide and the Rh complex containing CcEe polypeptide [J].
Beckmann, R ;
Smythe, JS ;
Anstee, DJ ;
Tanner, MJA .
BLOOD, 2001, 97 (08) :2496-2505
[6]  
Benghezal M, 2001, IMMUNOGENETICS, V52, P284
[7]   A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane [J].
Bruce, LJ ;
Beckmann, R ;
Ribeiro, ML ;
Peters, LL ;
Chasis, JA ;
Delaunay, J ;
Mohandas, N ;
Anstee, DJ ;
Tanner, MJA .
BLOOD, 2003, 101 (10) :4180-4188
[8]   RH blood group system and molecular basis of Rh-deficiency [J].
Cartron, JP .
BEST PRACTICE & RESEARCH CLINICAL HAEMATOLOGY, 1999, 12 (04) :655-689
[9]  
CARTRON JP, 1993, SEMIN HEMATOL, V30, P193
[10]   RNA interference: traveling in the cell and gaining functions? [J].
Cerutti, H .
TRENDS IN GENETICS, 2003, 19 (01) :39-46