Binding of flavin adenine dinucleotide to molybdenum-containing carbon monoxide dehydrogenase from Oligotropha carboxidovorans -: Structural and functional analysis of a carbon monoxide dehydrogenase species in which the native flavoprotein has been replaced by its recombinant counterpart produced in Escherichia coli

被引:39
作者
Gremer, L
Kellner, S
Dobbek, H
Huber, R
Meyer, O
机构
[1] Univ Bayreuth, Lehrstuhl Mikrobiol, D-95440 Bayreuth, Germany
[2] Max Planck Inst Biochem, D-82152 Martinsried, Bavaria, Germany
关键词
D O I
10.1074/jbc.275.3.1864
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The carbon monoxide (CO) dehydrogenase of Oligotropha carboxidovorans is composed of an S-selanylcysteine-containing 88.7-kDa molybdoprotein (L), a 17.8-kDa iron-sulfur protein (S), and a 30.2-kDa flavoprotein (M) in a (LMS)(2) subunit structure. The flavoprotein could be removed from CO dehydrogenase by dissociation with sodium dodecylsulfate, The resulting M(LS)(2)- or (LS)(2)-structured CO dehydrogenase species could be reconstituted with the recombinant apoflavoprotein produced in Escherichia coli, The formation of the heterotrimeric complex composed of the apoflavoprotein, the molybdoprotein, and the iron-sulfur protein involves structural changes that translate into the conversion of the apoflavoprotein from non-FAD binding to FAD binding. Binding of FAD to the reconstituted deflavo (LMS)(2) species occurred with second-order kinetics (k(+1) = 1350 M-1 s(-1)) and high affinity (K-d = 1.0 x 10(-9) M). The structure of the resulting flavo (LMS)(2) species at a 2.8-Angstrom resolution established the same fold and binding of the flavoprotein as in wild-type CO dehydrogenase, whereas the S-selanylcysteine 388 in the active-site loop on the molybdoprotein was disordered. In addition, the structural changes related to heterotrimeric complex formation or FAD binding were transmitted to the iron-sulfur protein and could be monitored by EPR, The type II 2Fe:2S center was identified in the N-terminal domain and the type I center in the C-terminal domain of the iron-sulfur protein.
引用
收藏
页码:1864 / 1872
页数:9
相关论文
共 41 条