Electric fields in tumors exposed to external voltage sources: Implication for electric field-mediated drug and gene delivery

被引:22
作者
Mossop, Brian J.
Barr, Roger C.
Henshaw, Joshua W.
Zaharoff, David A.
Yuan, Fan
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] NCI, Tumor Immunol & Biol Lab, Bethesda, MD 20892 USA
关键词
drug and gene delivery; electroporation; electrogenetherapy; electrochemotherapy;
D O I
10.1007/s10439-006-9151-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The intratumoral field, which determines the efficiency of electric field-mediated drug and gene delivery, can differ significantly from the applied field. Therefore, we investigated the distribution of the electric field in mouse tumors and tissue phantoms exposed to a large range of electric stimuli, and quantified the resistances of tumor, skin, and electrode-tissue interface. The samples used in the study included 4T1 and B16.F10 tumors, mouse skin, and tissue phantoms constructed with 1% agarose gel with or without 4T1 cells. When pulsed electric fields were applied to samples using a pair of parallel-plate electrodes, we determined the electric field and resistances in each sample as well as the resistance at the electrode-tissue interface. The electric fields in the center region of tissue phantoms and tumor slices ex vivo were macroscopically uniform and unidirectional between two parallel-plate electrodes. The field strengths in tumor tissues were significantly lower than the applied field under both ex vivo and in vivo conditions. During in vivo stimulation, the ratio of intratumoral versus applied fields was approximately either 20% or 55%, depending on the applied field. Meanwhile, the total resistance of skin and electrode-tissue interface was decreased by approximately 70% and the electric resistance at the center of both tumor models was minimally changed when the applied field was increased from 50 to 400 V/cm. These results may be useful for improving electric field-mediated drug and gene delivery in solid tumors.
引用
收藏
页码:1564 / 1572
页数:9
相关论文
共 31 条
[1]   ELECTRICAL-STIMULATION WITH PT ELECTRODES .2. ESTIMATION OF MAXIMUM SURFACE REDOX (THEORETICAL NON-GASSING) LIMITS [J].
BRUMMER, SB ;
TURNER, MJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1977, 24 (05) :440-443
[2]   ELECTROCHEMICAL CONSIDERATIONS FOR SAFE ELECTRICAL-STIMULATION OF NERVOUS-SYSTEM WITH PLATINUM-ELECTRODES [J].
BRUMMER, SB ;
TURNER, MJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1977, 24 (01) :59-63
[3]   Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer [J].
Bureau, MF ;
Gehl, J ;
Deleuze, V ;
Mir, LM ;
Scherman, D .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2000, 1474 (03) :353-359
[4]   Tissue electroporation: Quantification and analysis of heterogeneous transport in multicellular environments [J].
Canatella, PJ ;
Black, MM ;
Bonnichsen, DM ;
McKenna, C ;
Prausnitz, MR .
BIOPHYSICAL JOURNAL, 2004, 86 (05) :3260-3268
[5]   Quantitative study of electroporation-mediated molecular uptake and cell viability [J].
Canatella, PJ ;
Karr, JF ;
Petros, JA ;
Prausnitz, MR .
BIOPHYSICAL JOURNAL, 2001, 80 (02) :755-764
[6]   Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy - spatial and time dependent distribution [J].
Cemazar, M ;
Wilson, I ;
Dachs, GU ;
Tozer, GM ;
Sersa, G .
BMC CANCER, 2004, 4 (1)
[7]   Modeling electroporation in a single cell. I. Effects of field strength and rest potential [J].
DeBruin, KA ;
Krassowska, W .
BIOPHYSICAL JOURNAL, 1999, 77 (03) :1213-1224
[8]  
Dorgan S J, 1999, IEEE Trans Rehabil Eng, V7, P341, DOI 10.1109/86.788470
[9]   Apparatus for measuring the swelling dependent electrical conductivity of charged hydrated soft tissues [J].
Gu, WY ;
Justiz, MA .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (06) :790-793
[10]   TRANSPORT OF FLUID AND IONS THROUGH A POROUS-PERMEABLE CHARGED-HYDRATED TISSUE, AND STREAMING POTENTIAL DATA ON NORMAL BOVINE ARTICULAR-CARTILAGE [J].
GU, WY ;
LAI, WM ;
MOW, VC .
JOURNAL OF BIOMECHANICS, 1993, 26 (06) :709-723