A practical model for evaluating the performance of proton exchange membrane fuel cells

被引:71
作者
Moreira, Marcos V. [1 ]
da Silva, Gisele E. [2 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, Program Engn Elect, Ilha Fundao, BR-21945970 Rio De Janeiro, RJ, Brazil
[2] Chemtech, Dept Elect Engn, BR-20011030 Rio De Janeiro, RJ, Brazil
关键词
PEM fuel cell; Modeling; Energy conversion; STATE ELECTROCHEMICAL MODEL; VALIDATION; MANAGEMENT; TRANSPORT; SYSTEM; WATER;
D O I
10.1016/j.renene.2009.01.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Several models have been proposed in the literature to predict the performance of proton exchange membrane fuel cells (PEMFC). These models have different levels of complexity and can be divided basically into two groups: (i) mechanistic (theoretical); and (ii) semi-empirical models. The mechanistic models are obtained from electrochemical, thermodynamic, and fluid dynamic equations, and describes, with a high level of details, the processes in the operation of the fuel cell. The main drawback of the mechanistic approach is that, in general, the models are very complex, requiring the knowledge of parameters that are difficult to be obtained. Semi-empirical models, on the other hand, are easier to be obtained and can also be used to accurately predict the fuel cell system performance for engineering applications. In this paper, a new semi-empirical model, that is simpler than others presented in the literature, is proposed. It is derived by using semi-empirical equations and the resulting empirical coefficients are calculated through linear least squares. The model can be used in the evaluation of performance of small-distributed electrical generation systems, and also for the design of fuel cell systems for vehicles and portable electronics. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1734 / 1741
页数:8
相关论文
共 25 条
[1]   Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations [J].
Al-Baghdadi, MARS .
RENEWABLE ENERGY, 2005, 30 (10) :1587-1599
[2]   PERFORMANCE MODELING OF THE BALLARD-MARK-IV SOLD POLYMER ELECTROLYTE FUEL-CELL .2. EMPIRICAL-MODEL DEVELOPMENT [J].
AMPHLETT, JC ;
BAUMERT, RM ;
MANN, RF ;
PEPPLEY, BA ;
ROBERGE, PR ;
HARRIS, TJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (01) :9-15
[3]  
AMPHLETT JC, 1995, ELECTROCHEM SOC, V142, P1
[4]  
[Anonymous], 2002, FUEL CELL HDB, V6th
[5]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell - a parametric study [J].
Berning, T ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2003, 124 (02) :440-452
[6]   In-situ resistance measurements of Nafion(R) 117 membranes in polymer electrolyte fuel cells [J].
Buchi, FN ;
Scherer, GG .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 404 (01) :37-43
[7]   Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current [J].
Choi, Woojin ;
Howze, Jo. W. ;
Enjeti, Prasad .
JOURNAL OF POWER SOURCES, 2006, 158 (02) :1324-1332
[8]   Analysis of PEM fuel cell stacks using an empirical current-voltage equation [J].
Chu, D ;
Jiang, R ;
Walker, C .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (03) :365-370
[9]   Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells [J].
Corrêa, JM ;
Farret, FA ;
Popov, VA ;
Simoes, MG .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2005, 20 (01) :211-218
[10]   An electrochemical-based fuel-cell model suitable for electrical engineering automation approach [J].
Corrêa, JM ;
Farret, FA ;
Canha, LN ;
Simoes, MG .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (05) :1103-1112