Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates

被引:118
作者
Ramos, C [1 ]
Molbak, L [1 ]
Molin, S [1 ]
机构
[1] Tech Univ Denmark, Dept Microbiol, DK-2800 Lyngby, Denmark
关键词
D O I
10.1128/AEM.66.2.801-809.2000
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The growth activity of Pseudomonas putida cells colonizing the rhizosphere of barley seedlings was estimated at the single-cell level by monitoring ribosomal contents and synthesis rates. Ribosomal synthesis was monitored by using a system comprising a fusion of the ribosomal Escherichia coli rrnBP1 promoter to a gene encoding an unstable variant of the green fluorescent protein (Gfp). Gfp expression in a P. putida strain carrying this system inserted into the chromosome was strongly dependent on the growth phase and growth rate of the strain, and cells growing exponentially at rates of greater than or equal to 0.17 h-l emitted growth rate dependent green fluorescence detectable at the single-cell level. The single-cell ribosomal contents were very heterogeneous, as determined by quantitative hybridization with fluorescently labeled rRNA probes in P. putida cells extracted from the rhizosphere of 1-day-old barley seedlings grown under sterile conditions. After this, cells extracted from the root system had ribosomal contents similar to those found in starved cells. There was a significant decrease in the ribosomal content of P. putida cells when bacteria were introduced into nonsterile bulk or rhizosphere soil, and the Gfp monitoring system was not induced in cells extracted from either of the two soil systems. The monitoring system used permitted nondestructive in situ detection of fast-growing bacterial microcolonies on the sloughing root sheath cells of 1- and 2-day-old barley seedlings grown under sterile conditions, which demonstrated that it may be possible to use the unstable Gfp marker for studies of transient gene expression in plant-microbe systems.
引用
收藏
页码:801 / 809
页数:9
相关论文
共 55 条
[1]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[2]  
Andersen JB, 1998, APPL ENVIRON MICROB, V64, P2240
[3]   IN-SITU LOCALIZATION OF AZOSPIRILLUM-BRASILENSE IN THE RHIZOSPHERE OF WHEAT WITH FLUORESCENTLY LABELED, RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES AND SCANNING CONFOCAL LASER MICROSCOPY [J].
ASSMUS, B ;
HUTZLER, P ;
KIRCHHOF, G ;
AMANN, R ;
LAWRENCE, JR ;
HARTMANN, A .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (03) :1013-1019
[4]   GROWTH RATE-DEPENDENT CONTROL OF THE RRNB P1 CORE PROMOTER IN ESCHERICHIA-COLI [J].
BARTLETT, MS ;
GOURSE, RL .
JOURNAL OF BACTERIOLOGY, 1994, 176 (17) :5560-5564
[5]   FULLY-AUTOMATIC DETERMINATION OF SOIL BACTERIUM NUMBERS, CELL VOLUMES, AND FREQUENCIES OF DIVIDING CELLS BY CONFOCAL LASER-SCANNING MICROSCOPY AND IMAGE-ANALYSIS [J].
BLOEM, J ;
VENINGA, M ;
SHEPHERD, J .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (03) :926-936
[6]   Green fluorescent protein as a marker for Pseudomonas spp. [J].
Bloemberg, GV ;
OToole, GA ;
Lugtenberg, BJJ ;
Kolter, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (11) :4543-4551
[7]   CONSTRUCTION OF A RHIZOSPHERE PSEUDOMONAD WITH POTENTIAL TO DEGRADE POLYCHLORINATED-BIPHENYLS AND DETECTION OF BPH GENE-EXPRESSION IN THE RHIZOSPHERE [J].
BRAZIL, GM ;
KENEFICK, L ;
CALLANAN, M ;
HARO, A ;
DELORENZO, V ;
DOWLING, DN ;
OGARA, F .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (05) :1946-1952
[8]  
BRENNEROVA MV, 1994, FEMS MICROBIOL ECOL, V14, P319, DOI 10.1016/0168-6496(94)90115-5
[9]  
Campbell R., 1990, The rhizosphere., P11
[10]   Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli [J].
Chabot, R ;
Antoun, H ;
Kloepper, JW ;
Beauchamp, CJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (08) :2767-2772