Chirality and dirac operator on noncommutative sphere

被引:92
作者
CarowWatamura, U
Watamura, S
机构
[1] Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-77, Aoba-ku
基金
日本学术振兴会;
关键词
D O I
10.1007/BF02506411
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a derivation of the Dirac operator on the noncommutative 2-sphere within the framework of the bosonic fuzzy sphere and define Connes' triple. It turns out that there are two different types of spectra of the Dirac operator and correspondingly there are two classes of quantized algebras. As a result we obtain a new restriction on the Planck constant in Berezin's quantization. The map to the local frame in noncommutative geometry is also discussed.
引用
收藏
页码:365 / 382
页数:18
相关论文
共 34 条
[2]  
Berezin F. A., 1974, MATH USSR IZV, V8, P1109, DOI 10.1070/IM1974v008n05ABEH002140
[3]   GENERAL CONCEPT OF QUANTIZATION [J].
BEREZIN, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) :153-174
[4]  
Berezin FA., 1972, Izv. Akad. Nauk SSSR Ser. Mat, V6, P1117, DOI 10.1070/IM1972v006n05ABEH001913
[5]   GL(INFINITY) AND GEOMETRIC-QUANTIZATION [J].
BORDEMANN, M ;
HOPPE, J ;
SCHALLER, P ;
SCHLICHENMAIER, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (02) :209-244
[6]   TOEPLITZ QUANTIZATION OF KAHLER-MANIFOLDS AND GL(N), N-]INFINITY LIMITS [J].
BORDEMANN, M ;
MEINRENKEN, E ;
SCHLICHENMAIER, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :281-296
[7]   QUANTIZATION OF KAHLER-MANIFOLDS .2. [J].
CAHEN, M ;
GUTT, S ;
RAWNSLEY, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) :73-98
[8]   GRAND UNIFICATION IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FELDER, G ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1993, 395 (03) :672-698
[9]   DEFORMATION ESTIMATES FOR THE BEREZIN-TOEPLITZ QUANTIZATION [J].
COBURN, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :415-424
[10]  
Connes A., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P29, DOI 10.1016/0920-5632(91)90120-4