Data clustering using particle swarm optimization

被引:439
作者
van der Merwe, D [1 ]
Engelbrecht, AP [1 ]
机构
[1] Univ Pretoria, Dept Comp Sci, ZA-0002 Pretoria, South Africa
来源
CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS | 2003年
关键词
D O I
10.1109/CEC.2003.1299577
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper proposes two new approaches to using PSO to cluster data. It is shown how PSO can be used to find the centroids of a user specified number of clusters. The algorithm is then extended to use K-means clustering to seed the initial swarm. This second algorithm basically uses PSO to refine the clusters formed by K-means. The new PSO algorithms are evaluated on six data sets, and compared to the performance of K-means clustering. Results show that both PSO clustering techniques have much potential.
引用
收藏
页码:215 / 220
页数:6
相关论文
共 17 条
[1]  
ANDREWS HC, 1972, INTRO MATH TECHNIQUE
[2]  
[Anonymous], 2001, SPRINGER SERIES INFO, DOI DOI 10.1007/978-3-642-56927-2
[3]   A CLUSTERING TECHNIQUE FOR SUMMARIZING MULTIVARIATE DATA [J].
BALL, GH ;
HALL, DJ .
BEHAVIORAL SCIENCE, 1967, 12 (02) :153-&
[4]  
ENGELBRECHT AP, 1999, THESIS U STELLENBOSC
[5]  
EVANGELOU IE, 2001, WORKSH COMPL REAS GE
[6]  
FAUSETT LV, 1994, FUNDEMENTALS NEURAL
[7]  
Fisher D. H., 1987, Machine Learning, V2, P139, DOI 10.1007/BF00114265
[8]  
FORGY EW, 1965, BIOMETRICS, V21, P768
[9]  
Hartigan J. A., 1975, CLUSTERING ALGORITHM
[10]  
Kennedy J., 1995, 1995 IEEE International Conference on Neural Networks Proceedings (Cat. No.95CH35828), P1942, DOI 10.1109/ICNN.1995.488968