Distances in weighted trees and group inverse of Laplacian matrices

被引:49
作者
Kirkland, SJ
Neumann, M
Shader, BL
机构
[1] UNIV CONNECTICUT,DEPT MATH,STORRS,CT 06269
[2] UNIV WYOMING,DEPT MATH,LARAMIE,WY 82071
关键词
Laplacian matrix; generalized inverse; weighted tree;
D O I
10.1137/S0895479896298713
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we find formulas for group inverses of Laplacians of weighted trees. We then develop a relationship between entries of the group inverse and various distance functions on trees. In particular, we show that the maximal and minimal entries on the diagonal of the group inverse correspond to certain pendant vertices of the tree and to a centroid of the tree, respectively. We also give a characterization for the group inverses of the Laplacian of an unweighted tree to be an M-matrix.
引用
收藏
页码:827 / 841
页数:15
相关论文
共 10 条
[1]  
[Anonymous], LINEAR ALGEBRA APPL
[2]  
Berman A., 1994, CLASSICS APPL MATH, DOI [DOI 10.1137/1.9781611971262, 10.1016/C2013-0-10361-3]
[3]  
CAMPBELL SL, 1991, GENERALIZED INVERSES
[4]   A COMBINATORIAL PROOF OF THE ALL MINORS MATRIX TREE THEOREM [J].
CHAIKEN, S .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (03) :319-329
[5]  
Chen Y., 1995, LINEAR MULTILINEAR A, V39, P325
[6]   DERIVATIVES OF THE PERRON ROOT AT AN ESSENTIALLY NONNEGATIVE MATRIX AND THE GROUP INVERSE OF AN M-MATRIX [J].
DEUTSCH, E ;
NEUMANN, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 102 (01) :1-29
[7]   STATUS AND CONTRASTATUS [J].
HARARY, F .
SOCIOMETRY, 1959, 22 (01) :23-43
[8]  
Kirkland S., 1996, Linear Multilinear Algebra, V40, P311, DOI [10.1080/03081089608818448, DOI 10.1080/03081089608818448]
[9]  
KIRKLAND SJ, IN PRESS CZECHOSLOVA
[10]  
Parter SV., 1962, J MATH ANAL APPL, V4, P102, DOI DOI 10.1016/0022-247X(62)90032-X