Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with arnyotrophic lateral sclerosis

被引:112
作者
Furukawa, Yoshiaki [1 ]
O'Halloran, Thomas V. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Chem Life Proc Inst, Evanston, IL 60208 USA
关键词
D O I
10.1089/ars.2006.8.847
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Activation of the enzyme Cu,Zn-superoxide dismutase (SOD1) involves several posttranslational modifications including copper and zinc binding, as well as formation of the intramolecular disulfide bond. The copper chaperone for SOD1, CCS, is responsible for intracellular copper loading in SOD1 under most physiological conditions. Recent in vitro and in vivo assays reveal that CCS not only delivers copper to SOD1 under stringent copper limitation, but it also facilitates the stepwise conversion of the disulfide-reduced immature SOD1 to the active disulfide-containing enzyme. The two new functions attributed to CCS, (i.e., O-2-dependent sulfhydryl oxidase- and disulfide isomerase-like activities) indicate that this protein has attributes of the larger class of molecular chaperones. The CCS-dependent activation of SOD1 is dependent upon oxygen availability, suggesting that the cell only loads copper and activates this enzyme when O-2-based oxidative stress is present. Thiol/disulfide status as well as metallation state of SOD1 significantly affects its structure and protein aggregation, which are relevant in pathologies of a neurodegenerative disease, amyotrophic lateral sclerosis (ALS). The authors review here a mechanism for posttranslational activation of SOD1 and discuss models for ALS in which the most immature forms of the SOD1 polypeptide exhibits propensity to form toxic aggregates.
引用
收藏
页码:847 / 867
页数:21
相关论文
共 197 条
[1]  
ABERNETHY JL, 1974, J BIOL CHEM, V249, P7339
[2]   ASAView: Database and tool for solvent accessibility representation in proteins [J].
Ahmad, S ;
Gromiha, M ;
Fawareh, H ;
Sarai, A .
BMC BIOINFORMATICS, 2004, 5 (1)
[3]   N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis [J].
Andreassen, OA ;
Dedeoglu, A ;
Klivenyi, P ;
Beal, MF ;
Bush, AI .
NEUROREPORT, 2000, 11 (11) :2491-2493
[4]   INCREASE IN THE GLUCOSYLATED FORM OF ERYTHROCYTE CU-ZN-SUPEROXIDE DISMUTASE IN DIABETES AND CLOSE ASSOCIATION OF THE NONENZYMATIC GLUCOSYLATION WITH THE ENZYME-ACTIVITY [J].
ARAI, K ;
IIZUKA, S ;
TADA, Y ;
OIKAWA, K ;
TANIGUCHI, N .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 924 (02) :292-296
[5]   The unusually stable quaternary structure of human Cu,Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfide status [J].
Arnesano, F ;
Banci, L ;
Bertini, I ;
Martinelli, M ;
Furukawa, Y ;
O'Halloran, TV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (46) :47998-48003
[6]  
ASAYAMA K, 1985, J BIOL CHEM, V260, P2212
[7]   Solution structure of apo Cu,Zn superoxide dismutase: Role of metal ions in protein folding [J].
Banci, L ;
Bertini, I ;
Cramaro, F ;
Del Conte, R ;
Viezzoli, MS .
BIOCHEMISTRY, 2003, 42 (32) :9543-9553
[8]   Solution structure of reduced monomeric Q133M2 copper, zinc superoxide dismutase (SOD). Why is SOD a dimeric enzyme? [J].
Banci, L ;
Benedetto, M ;
Bertini, I ;
Del Conte, R ;
Piccioli, M ;
Viezzoli, MS .
BIOCHEMISTRY, 1998, 37 (34) :11780-11791
[9]   Structure and dynamics of copper-free SOD: The protein before binding copper [J].
Banci, L ;
Bertini, I ;
Cantini, F ;
D'Onofrio, M ;
Viezzoli, MS .
PROTEIN SCIENCE, 2002, 11 (10) :2479-2492
[10]   ISOLATION OF AN ACTIVE AND HEAT-STABLE MONOMERIC FORM OF CU,ZN SUPEROXIDE-DISMUTASE FROM THE PERIPLASMIC SPACE OF ESCHERICHIA-COLI [J].
BATTISTONI, A ;
ROTILIO, G .
FEBS LETTERS, 1995, 374 (02) :199-202