Structural and electrochemical properties of three-dimensionally ordered macroporous tin(IV) oxide films

被引:144
作者
Lytle, JC
Yan, HW
Ergang, NS
Smyrl, WH
Stein, A
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
D O I
10.1039/b401890g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a colloidal-crystal templating technique to prepare three-dimensionally ordered macroporous (3DOM) tin(IV) oxide films for use as lithium ion anodes. In principle, 3DOM architectures are expected to diminish diffusional polarization and yield high rates of charge/discharge due to ion diffusion pathlengths on a nanometer scale and ready electrolyte access to relatively large internal electrode/electrolyte interfacial areas. Uniformly-sized polymer spheres were deposited in a close-packed arrangement on a current collecting substrate. A tin( IV) fluid precursor infiltrated the interstitial space between the spheres and was dried. Subsequent calcination removed the polymer sphere template and formed an inverse opal film composed of nanocrystalline SnO2. These films were characterized by SEM, XRD, elemental analysis, BET, CV, and galvanostatic cycling. Large structural changes occurred in these samples as a result of the formation of LixSn (0 less than or equal to x less than or equal to 4.4) alloys during cycling. This swelling could not be suppressed by the inclusion of additives to the precursor solution. Morphological changes were absent after cycling at significantly higher rates, possibly due to ohmic losses that prevented the electrochemical reactions from occurring.
引用
收藏
页码:1616 / 1622
页数:7
相关论文
共 49 条