Escherichia coli cyclomodulin Cif induces G2 arrest of the host cell cycle without activation of the DNA-damage checkpoint-signalling pathway

被引:70
作者
Taieb, Frederic [1 ]
Nougayrede, Jean-Philippe [1 ]
Watrin, Claude [1 ]
Samba-Louaka, Ascel [1 ]
Oswald, Eric [1 ]
机构
[1] ENVT, INRA, UMR 1225, IHAP, F-31000 Toulouse, France
关键词
D O I
10.1111/j.1462-5822.2006.00757.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The cycle inhibiting factor (Cif) belongs to a family of bacterial toxins and effector proteins, the cyclomodulins, that deregulate the host cell cycle. Upon injection into HeLa cells by the enteropathogenic Escherichia coli (EPEC) type III secretion system, Cif induces a cytopathic effect characterized by the recruitment of focal adhesion plates and the formation of stress fibres, an irreversible cell cycle arrest at the G(2)/M transition, and sustained inhibitory phosphorylation of mitosis inducer, CDK1. Here, we report that the reference typical EPEC strain B171 produces a functional Cif and that lipid- mediated delivery of purified Cif into HeLa cells induces cell cycle arrest and actin stress fibres, implying that Cif is necessary and sufficient for these effects. EPEC infection of intestinal epithelial cells (Caco-2, IEC-6) also induces cell cycle arrest and CDK1 inhibition. The effect of Cif is strikingly similar to that of cytolethal distending toxin (CDT), which inhibits the G(2)/M transition by activating the DNA-damage checkpoint pathway. However, in contrast to CDT, Cif does not cause phosphorylation of histone H2AX, which is associated with DNA double-stranded breaks. Following EPEC infection, the checkpoint effectors ATM/ATR, Chk1 and Chk2 are not activated, the levels of the CDK-activating phosphatases Cdc25B and Cdc25C are not affected, and Cdc25C is not sequestered in host cell cytoplasm. Hence, Cif activates a DNA damage-independent signalling pathway that leads to inhibition of the G(2)/M transition.
引用
收藏
页码:1910 / 1921
页数:12
相关论文
共 45 条
[1]   Study of the cytolethal distending toxin (CDT)-activated cell cycle checkpoint - Involvement of the CHK2 kinase [J].
Alby, F ;
Mazars, R ;
de Rycke, J ;
Guillou, E ;
Baldin, V ;
Darbon, JM ;
Ducommun, B .
FEBS LETTERS, 2001, 491 (03) :261-265
[2]   DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation [J].
Bakkenist, CJ ;
Kastan, MB .
NATURE, 2003, 421 (6922) :499-506
[3]   Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli [J].
Bieber, D ;
Ramer, SW ;
Wu, CY ;
Murray, WJ ;
Tobe, T ;
Fernandez, R ;
Schoolnik, GK .
SCIENCE, 1998, 280 (5372) :2114-2118
[4]   Caffeine inhibits the checkpoint kinase ATM [J].
Blasina, A ;
Price, BD ;
Turenne, GA ;
McGowan, CH .
CURRENT BIOLOGY, 1999, 9 (19) :1135-1138
[5]   CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage [J].
Cazales, M ;
Schmitt, E ;
Montembault, E ;
Dozier, C ;
Prigent, C ;
Ducommun, B .
CELL CYCLE, 2005, 4 (09) :1233-1238
[6]   Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 β-lactamase as a new fluorescence-based reporter [J].
Charpentier, X ;
Oswald, E .
JOURNAL OF BACTERIOLOGY, 2004, 186 (16) :5486-5495
[7]   Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G(2)/M transition by preventing cdc2 protein kinase dephosphorylation and activation [J].
Comayras, C ;
Tasca, C ;
Peres, SY ;
Ducommun, B ;
Oswald, E ;
DeRycke, J .
INFECTION AND IMMUNITY, 1997, 65 (12) :5088-5095
[8]   The Haemophilus ducreyi cytolethal distending toxin induces cell cycle arrest and apoptosis via the DNA damage checkpoint pathways [J].
Cortes-Bratti, X ;
Karlsson, C ;
Lagergård, T ;
Thelestam, M ;
Frisan, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (07) :5296-5302
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   Cytolethal distending toxin (CDT): a bacterial weapon to control host cell proliferation? [J].
De Rycke, J ;
Oswald, E .
FEMS MICROBIOLOGY LETTERS, 2001, 203 (02) :141-148