Histone acetylation: truth of consequences?

被引:77
作者
Choi, Jennifer K. [1 ,2 ]
Howe, LeAnn J. [1 ,2 ]
机构
[1] Univ British Columbia, Dept Biochem & Mol Biol, Vancouver, BC V6T 1Z3, Canada
[2] Univ British Columbia, Inst Life Sci, Mol Epigenet Grp, Vancouver, BC V6T 1Z3, Canada
关键词
acetylation; histone; chromatin; nucleosome; RNA-POLYMERASE-II; NUCLEOSOME CORE PARTICLE; ACETYLTRANSFERASE COMPLEXES; CHROMATIN MODIFICATIONS; SELECTIVE RECOGNITION; LYSINE RECOGNITION; REMODELING COMPLEX; ACTIVATION DOMAIN; BINDING PROTEIN; H4; ACETYLATION;
D O I
10.1139/O08-112
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic DNA is packaged into a nucleoprotein structure known as chromatin, which is comprised of DNA, histones, and nonhistone proteins. Chromatin structure is highly dynamic, and can shift from a transcriptionally inactive state to an active form in response to intra- and extracellular signals. A major factor in chromatin architecture is the covalent modification of histories through the addition of chemical moieties, Such as acetyl, methyl, ubiquitin, and phosphate groups. The acetylation of the amino-terminal tails of histories is a process that is highly conserved in eukaryotes, and was one of the earliest histone modifications characterized. Since its identification in 1964, a large body of evidence has accumulated demonstrating that histone acetylation plays an important role in transcription. Despite Our ever-growing understanding of the nuclear processes involved in nucleosome acetylation, however, the exact biochemical mechanisms underlying the downstream effects of historic acetylation have yet to be fully elucidated. To date, historic acetylation has been proposed to function in 2 nonmutually exclusive manners: by directly altering chromatin structure, and by acting as a molecular tag for the recruitment of chromatin-modifying complexes. Here, we discuss recent research focusing on these 2 potential roles of historic acetylation and clarify what we actually know about the function of this modification.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 128 条
[1]   Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome [J].
Albert, Istvan ;
Mavrich, Travis N. ;
Tomsho, Lynn P. ;
Qi, Ji ;
Zanton, Sara J. ;
Schuster, Stephan C. ;
Pugh, B. Franklin .
NATURE, 2007, 446 (7135) :572-576
[2]   ACETYLATION + METHYLATION OF HISTONES + THEIR POSSIBLE ROLE IN REGULATION OF RNA SYNTHESIS [J].
ALLFREY, VG ;
FAULKNER, R ;
MIRSKY, AE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1964, 51 (05) :786-+
[3]   Function of the c-Myc oncoprotein in chromatin remodeling and transcription [J].
Amati, B ;
Frank, SR ;
Donjerkovic, D ;
Taubert, S .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2001, 1471 (03) :M135-M145
[4]   Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Lowary, PT ;
Widom, J .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (04) :977-985
[5]   Eaf1 is the platform for NuA4 molecular assembly that evolutionarily links chromatin acetylation to ATP-dependent exchange of histone H2A variants [J].
Auger, Andreanne ;
Galarneau, Luc ;
Altaf, Mohammed ;
Nourani, Amine ;
Doyon, Yannick ;
Utley, Rhea T. ;
Cronier, Dominique ;
Allard, Stephane ;
Cote, Jacques .
MOLECULAR AND CELLULAR BIOLOGY, 2008, 28 (07) :2257-2270
[6]   HISTONE HYPERACETYLATION - ITS EFFECTS ON NUCLEOSOME CONFORMATION AND STABILITY [J].
AUSIO, J ;
VANHOLDE, KE .
BIOCHEMISTRY, 1986, 25 (06) :1421-1428
[7]   The SAGA continues: expanding the cellular role of a transcriptional co-activator complex [J].
Baker, S. P. ;
Grant, P. A. .
ONCOGENE, 2007, 26 (37) :5329-5340
[8]   Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation [J].
Balasubramanian, R ;
Pray-Grant, MG ;
Selleck, W ;
Grant, PA ;
Tan, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7989-7995
[9]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[10]   Increasing the rate of chromatin remodeling and gene activation -: a novel role for the histone acetyltransferase Gcn5 [J].
Barbaric, S ;
Walker, J ;
Schmid, A ;
Svejstrup, JQ ;
Hörz, W .
EMBO JOURNAL, 2001, 20 (17) :4944-4951