Iron acquisition and regulation in Campylobacter jejuni

被引:195
作者
Palyada, K
Threadgill, D
Stintzi, A [1 ]
机构
[1] Oklahoma State Univ, Coll Vet Med, Dept Vet Pathobiol, Stillwater, OK 74078 USA
[2] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
关键词
D O I
10.1128/JB.186.14.4714-4729.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Iron affects the physiology of bacteria in two different ways: as a micronutrient for bacterial growth and as a catalyst for the formation of hydroxyl radicals. In this study, we used DNA microarrays to identify the C jejuni genes that have their transcript abundance affected by iron availability. The transcript levels of 647 genes were affected after the addition of iron to iron-limited C jejuni cells. Several classes of affected genes were revealed within 15 min, including immediate-early response genes as well as those specific to iron acquisition and metabolism. In contrast, only 208 genes were differentially expressed during steady-state experiments comparing iron-rich and iron-limited growth conditions. As expected, genes annotated as being involved in either iron acquisition or oxidative stress defense were downregulated during both time course and steady-state experiments, while genes encoding proteins involved in energy metabolism were upregulated. Because the level of protein glycosylation increased with iron limitation, iron may modulate the level of C jejuni virulence by affecting the degree of protein glycosylation. Since iron homeostasis has been shown to be Fur regulated in C jejuni, an isogenic fur mutant was used to define the Fur regulon by transcriptome profiling. A total of 53 genes were Fur regulated, including many genes not previously associated with Fur regulation. A putative Fur binding consensus sequence was identified in the promoter region of most iron-repressed and Fur-regulated genes. Interestingly, a fur mutant was found to be significantly affected in its ability to colonize the gastrointestinal tract of chicks, highlighting the importance of iron homeostasis in vivo. Directed mutagenesis of other genes identified by the microarray analyses allowed the characterization of the ferric enterobactin receptor, previously named CfrA. Chick colonization assays indicated that mutants defective in enterobactin-mediated iron acquisition were unable to colonize the gastrointestinal tract. In addition, a mutation in a receptor (Cj0178) for an uncharacterized iron source also resulted in reduced colonization potential. Overall, this work documents the complex response of C.jejuni to iron availability, describes the genetic network between the Fur and iron regulons, and provides insight regarding the role of iron in C. jejuni colonization in vivo.
引用
收藏
页码:4714 / 4729
页数:16
相关论文
共 59 条
  • [1] Bacterial iron homeostasis
    Andrews, SC
    Robinson, AK
    Rodríguez-Quiñones, F
    [J]. FEMS MICROBIOLOGY REVIEWS, 2003, 27 (2-3) : 215 - 237
  • [2] UTILIZATION OF EXOGENOUS SIDEROPHORES BY CAMPYLOBACTER SPECIES
    BAIG, BH
    WACHSMUTH, IK
    MORRIS, GK
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 1986, 23 (03) : 431 - 433
  • [3] An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni
    Baillon, MLA
    van Vliet, AHM
    Ketley, JM
    Constantinidou, C
    Penn, CW
    [J]. JOURNAL OF BACTERIOLOGY, 1999, 181 (16) : 4798 - 4804
  • [4] Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis
    Bearden, SW
    Fetherston, JD
    Perry, RD
    [J]. INFECTION AND IMMUNITY, 1997, 65 (05) : 1659 - 1668
  • [5] Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays
    Bernstein, JA
    Khodursky, AB
    Lin, PH
    Lin-Chao, S
    Cohen, SN
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) : 9697 - 9702
  • [6] Braun V, 1997, BIOL CHEM, V378, P779
  • [7] BRAUN V, 2002, MICROBIAL TRANSPORT, P289
  • [8] Role of catalase in Campylobacter jejuni intracellular survival
    Day, WA
    Sajecki, JL
    Pitts, TM
    Joens, LA
    [J]. INFECTION AND IMMUNITY, 2000, 68 (11) : 6337 - 6345
  • [9] DORING G, 1988, INFECT IMMUN, V56, P291
  • [10] Cluster analysis and display of genome-wide expression patterns
    Eisen, MB
    Spellman, PT
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) : 14863 - 14868