Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles

被引:34
作者
Hsu, Jennifer L. [1 ]
Rho, Seung Bae [1 ]
Vannella, Kevin M. [1 ]
Martinis, Susan A. [1 ]
机构
[1] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
关键词
D O I
10.1074/jbc.M601606200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Leucyl-tRNA synthetase (LeuRS) performs dual essential roles in group I intron RNA splicing as well as protein synthesis within the yeast mitochondria. Deletions of the C terminus differentially impact the two functions of the enzyme in splicing and aminoacylation in vivo. Herein, we determined that a five-amino acid C-terminal deletion of LeuRS, which does not complement a null strain, can form a ternary complex with the bI4 intron and its maturase splicing partner. However, the complex fails to stimulate splicing activity. The x-ray co-crystal structure of LeuRS showed that a C-terminal extension of about 60 amino acids forms a discrete domain, which is unique among the LeuRSs and interacts with the corner of the L-shaped tRNA(Leu). Interestingly, deletion of the entire yeast mitochondrial LeuRS C-terminal domain enhanced its aminoacylation and amino acid editing activities. In striking contrast, deletion of the corresponding C-terminal domain of Escherichia coli LeuRS abolished aminoacylation of tRNALeu and also amino acid editing of mischarged tRNA molecules. These results suggest that the role of the leucine-specific C-terminal domain in tRNA recognition for aminoacylation and amino acid editing has adapted differentially and with surprisingly opposite effects. We propose that the secondary role of yeast mitochondrial LeuRS in RNA splicing has impacted the functional evolution of this critical C-terminal domain.
引用
收藏
页码:23075 / 23082
页数:8
相关论文
共 35 条
[1]   In vitro selection of RNAs aminoacylated by Escherichia coli leucyl-tRNA synthetase [J].
Asahara, H ;
Nameki, N ;
Hasegawa, T .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 283 (03) :605-618
[2]   RECOGNITION NUCLEOTIDES OF ESCHERICHIA-COLI TRANSFER RNA(LEU) AND ITS ELEMENTS FACILITATING DISCRIMINATION FROM TRANSFER RNA(SER) AND TRANSFER RNA(TYR) [J].
ASAHARA, H ;
HIMENO, H ;
TAMURA, K ;
HASEGAWA, T ;
WATANABE, K ;
SHIMIZU, M .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 231 (02) :219-229
[3]   Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase [J].
Beuning, PJ ;
Musier-Forsyth, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (33) :30779-30785
[4]   IDENTITY ELEMENTS OF HUMAN TRNA(LEU) - STRUCTURAL REQUIREMENTS FOR CONVERTING HUMAN TRNA(SER) INTO A LEUCINE ACCEPTOR IN-VITRO [J].
BREITSCHOPF, K ;
ACHSEL, T ;
BUSCH, K ;
GROSS, HJ .
NUCLEIC ACIDS RESEARCH, 1995, 23 (18) :3633-3637
[5]   ASSEMBLY OF A CLASS-I TRANSFER-RNA SYNTHETASE FROM PRODUCTS OF AN ARTIFICIALLY SPLIT GENE [J].
BURBAUM, JJ ;
SCHIMMEL, P .
BIOCHEMISTRY, 1991, 30 (02) :319-324
[6]   The 2 Å crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue [J].
Cusack, S ;
Yaremchuk, A ;
Tukalo, M .
EMBO JOURNAL, 2000, 19 (10) :2351-2361
[7]   SEQUENCE, STRUCTURAL AND EVOLUTIONARY RELATIONSHIPS BETWEEN CLASS-2 AMINOACYL-TRANSFER RNA-SYNTHETASES [J].
CUSACK, S ;
HARTLEIN, M ;
LEBERMAN, R .
NUCLEIC ACIDS RESEARCH, 1991, 19 (13) :3489-3498
[8]   PARTITION OF TRANSFER-RNA SYNTHETASES INTO 2 CLASSES BASED ON MUTUALLY EXCLUSIVE SETS OF SEQUENCE MOTIFS [J].
ERIANI, G ;
DELARUE, M ;
POCH, O ;
GANGLOFF, J ;
MORAS, D .
NATURE, 1990, 347 (6289) :203-206
[9]   Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation [J].
Fukunaga, R ;
Yokoyama, S .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 346 (01) :57-71
[10]   Universal rules and idiosyncratic features in tRNA identity [J].
Giegé, R ;
Sissler, M ;
Florentz, C .
NUCLEIC ACIDS RESEARCH, 1998, 26 (22) :5017-5035