Comparative proteomic analysis of mouse embryonic stem cells and neonatal-derived cardiomyocytes

被引:24
作者
Baharvand, Hossein [1 ]
Hajheidari, Mohsen
Zonouzi, Roseata
Ashtiani, Saeid Kazemi
Hosseinkhani, Saman
Salekdeh, Ghasem Hosseini
机构
[1] Royan Inst, Dept Stem Cells, Tehran, Iran
[2] ABRII, Dept Physiol & Prot, Karaj, Iran
[3] Tarbiat Modaress Univ, Fac Sci, Dept Biochem, Tehran, Iran
关键词
embryonic stem cells; cardiomyocytes; proteomics; differentiation;
D O I
10.1016/j.bbrc.2006.08.151
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pluripotent embryonic stem cells (ESCs) spontaneously differentiate via embryo-like aggregates into cardiomyocytes. A thorough understanding of the molecular conditions in ESCs is necessary before other potential applications of these cells such as cell therapy can be materialized. We applied two dimensional electrophoresis to analyze and compare the proteome profiling of spontaneous mouse ESC-derived cardiomyocytes (ESC-DCs), undifferentiated mouse ESCs, and neonatal-derived cardiomyocytes (N-DCs). Ninety-five percent of the proteins detected on the ESC-DCs and N-DCs could be precisely paired with one other, whereas only twenty percent of the ESC proteins could be reliably matched with those on the ESC-DCs and N-DCSs, suggesting a striking similarity between them. Having identified sixty proteins in the said three cell types, we sought to provide possible explanations for their differential expression patterns and discuss their relevance to cell biology. This study provides a new insight into the gene expression pattern of differentiated cardiomyocytes and is further evidence for a close relation between ESC-DCs and N-DCSs. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1041 / 1049
页数:9
相关论文
共 24 条
[1]   Specificity of 14-3-3 isoform dimer interactions and phosphorylation [J].
Aitken, A ;
Baxter, H ;
Dubois, T ;
Clokie, S ;
Mackie, S ;
Mitchell, K ;
Peden, A ;
Zemlickova, E .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2002, 30 :351-360
[2]   The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes [J].
Baharvand, H ;
Azarnia, M ;
Parivar, K ;
Ashtiani, SK .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2005, 38 (03) :495-503
[3]  
Baharvand H, 2004, IN VITRO CELL DEV-AN, V40, P76, DOI 10.1290/1543-706X(2004)040<0076:CCDFEO>2.0.CO
[4]  
2
[5]   Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes [J].
Beqqali, Abdelaziz ;
Kloots, Jantine ;
Ward-van Oostwaard, Dorien ;
Mummery, Christine ;
Passier, Robert .
STEM CELLS, 2006, 24 (08) :1956-1967
[6]   IMPROVED SILVER STAINING OF PLANT-PROTEINS, RNA AND DNA IN POLYACRYLAMIDE GELS [J].
BLUM, H ;
BEIER, H ;
GROSS, HJ .
ELECTROPHORESIS, 1987, 8 (02) :93-99
[7]  
Chlopcikova Sarka, 2001, Biomedical Papers (Olomouc), V145, P49
[8]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[9]   ESTABLISHMENT IN CULTURE OF PLURIPOTENTIAL CELLS FROM MOUSE EMBRYOS [J].
EVANS, MJ ;
KAUFMAN, MH .
NATURE, 1981, 292 (5819) :154-156
[10]   Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis [J].
Hescheler, J ;
Fleischmann, BK ;
Lentini, S ;
Maltsev, VA ;
Rohwedel, J ;
Wobus, AM ;
Addicks, K .
CARDIOVASCULAR RESEARCH, 1997, 36 (02) :149-162