Subplasmalemmal Ca2+, dynamically equilibrated with extracellular Ca2+, affects numerous signaling molecules, effectors, and events within this restricted space. We demonstrated the presence of a novel Ca2+ wave propagating beneath the plasma membrane in response to acute elevation of extracellular [Ca2+], by targeting a Ca2+ sensor, cameleon, to the endothelial plasmalemma. These subcortical waves, spatially distinct from classical cytosolic Ca2+ waves, originated in localized regions and propagated throughout the subplasmalemma. Translocation of an expressed GFP fused with a PH domain of PLCdelta from the plasma membrane to the cytosol accompanied these subcortical waves, and U73122 attenuated not only the GFP-PHdelta translocation, but also the peak amplitude of the subcortical Ca2+ waves; this finding suggests the involvement of local IP3 production through PLC-mediated PIP2 hydrolysis in the initiation of these waves. Changes in NO production as well as PKCbeta-GFP translocation from the cytosol to the plasma membrane, but not of GFP-PLA(2) to perinuclear endomembranes, were associated with the subplasmalemmal Ca2+ changes. Thus, extracellular Ca2+ maintains the basal PLC activity of the plasma membrane, is involved in the initiation of compartmentalized subcortical Ca2+ waves, and regulates Ca2+-dependent signaling molecules residing in or translocated to the plasma membrane. The full text of this article is available online at http://circres.ahajournals.org.