Release of arsenic associated with the reduction and transformation of iron oxides

被引:417
作者
Pedersen, Hanne D. [1 ]
Postma, Dieke [1 ]
Jakobsen, Rasmus [1 ]
机构
[1] Tech Univ Denmark, Inst Environm & Resources, DK-2800 Lyngby, Denmark
关键词
D O I
10.1016/j.gca.2006.06.1370
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The behaviour of trace amounts of arsenate coprecipitated with ferrihydrite, lepidocrocite and goethite was studied during reductive dissolution and phase transformation of the iron oxides using [Fe-55]- and [As-73]-labelled iron oxides. The As/Fe molar ratio ranged from 0 to 0.005 for ferrihydrite and lepidocrocite and from 0 to 0.001 for goethite. For ferrihydrite and lepidocrocite, all the arsenate remained associated with the surface, whereas for goethite only 30% of the arsenate was desorbable. The rate of reductive dissolution in 10 mM ascorbic acid was unaffected by the presence of arsenate for any of the iron oxides and the arsenate was not reduced to arsenite by ascorbic acid. During reductive dissolution of the iron oxides, arsenate was released incongruently with Fe2+ for all the iron oxides. For ferrihydrite and goethite, the arsenate remained adsorbed to the surface and was not released until the surface area became too small to adsorb all the arsenate. In contrast, arsenate preferentially desorbs from the surface of lepidocrocite. During Fe2+ catalysed transformation of ferrihydrite and lepidocrocite, arsenate became bound more strongly to the product phases. X-ray diffractograms showed that ferrihydrite was transformed into lepidocrocite, goethite and magnetite whereas lepidocrocite either remained untransformed or was transformed into magnetite. The rate of recrystallization of ferrihydrite was not affected by the presence of arsenate. The results presented here imply that during reductive dissolution of iron oxides in natural sediments there will be no simple correlation between the release of arsenate and Fe2+. Recrystallization of the more reactive iron oxides into more crystalline phases, induced by the appearance of Fe2+ in anoxic aquifers, may be an important trapping mechanism for arsenic. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:4116 / 4129
页数:14
相关论文
共 78 条
[1]   Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation [J].
Acharyya, SK ;
Lahiri, S ;
Raymahashay, BC ;
Bhowmik, A .
ENVIRONMENTAL GEOLOGY, 2000, 39 (10) :1127-1137
[2]  
Acharyya SK, 1999, NATURE, V401, P545, DOI 10.1038/44052
[3]  
AFONSO MD, 1990, J COLLOID INTERF SCI, V138, P74
[4]   Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite [J].
Alvarez, M ;
Sileo, EE ;
Rueda, EH .
CHEMICAL GEOLOGY, 2005, 216 (1-2) :89-97
[5]   Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater [J].
Anawar, HM ;
Akai, J ;
Sakugawa, H .
CHEMOSPHERE, 2004, 54 (06) :753-762
[6]   Arsenic poisoning in groundwater - Health risk and geochemical sources in Bangladesh [J].
Anawar, HM ;
Akai, J ;
Mostofa, KMG ;
Safiullah, S ;
Tareq, SM .
ENVIRONMENT INTERNATIONAL, 2002, 27 (07) :597-604
[7]  
[Anonymous], 2001, BRIT GEOLOGICAL SURV
[8]  
*APHA, 1995, STNAD METH EX WAT WA, V3
[9]   Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic [J].
Appelo, CAJ ;
Van der Weiden, MJJ ;
Tournassat, C ;
Charlet, L .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (14) :3096-3103
[10]  
ATKINS A, 2002, ATKINS PHYS CHEM