Disabling a C-terminal autoinhibitory control element in endothelial nitric-oxide synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli

被引:63
作者
Lane, P
Gross, SS
机构
[1] Cornell Univ, Weill Med Coll, Dept Pharmacol, New York, NY 10021 USA
[2] Cornell Univ, Weill Med Coll, Program Biochem & Struct Biol, New York, NY 10021 USA
关键词
D O I
10.1074/jbc.M200258200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Calmodulin-dependent activation of endothelial nitric-oxide synthase is generally considered to follow a transient increase in intracellular calcium levels. However, a number of physiological stimuli (e.g. endothelial shear-stress, insulin) are known to activate endothelial nitric oxide (eNOS) via a non-classical, "calcium-independent" pathway. Recent findings demonstrate that such stimuli elicit the phosphorylation of a C-terminal residue in eNOS (Ser(1179) in the bovine isoform), rendering eNOS active at resting levels of intracellular calcium. However, the mechanistic basis for this mode of eNOS activation remains unknown. Protein modeling led us to consider that the C terminus of eNOS may fulfill an autoinhibitory function that can be disrupted by phosphorylation of serine 1179. To test this possibility we contrasted the phenotype of wild type bovine eNOS with that of a mutant lacking C-terminal residues 1179-1205 (CDelta27 eNOS). Despite no observed difference in calmodulin affinity, CDelta27 eNOS exhibited a 5-fold reduction in EC50 for calcium and a 2-4-fold increase in maximal catalytic activities. In these phenotypic properties, CDelta27 accurately mimics phospho-Ser(1179) wild type eNOS. We conclude that the C terminus imposes a significant barrier to the activation of eNOS by calmodulin binding and that this barrier can be functionally disabled by Ser(1179) phosphorylation-elicited enzyme activation.
引用
收藏
页码:19087 / 19094
页数:8
相关论文
共 44 条
[1]   NITRIC-OXIDE SYNTHASES REVEAL A ROLE FOR CALMODULIN IN CONTROLLING ELECTRON-TRANSFER [J].
ABUSOUD, HM ;
STUEHR, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (22) :10769-10772
[2]  
ABUSOUD HM, 1994, J BIOL CHEM, V269, P32047
[3]   Tryptophan 409 controls the activity of neuronal nitric-oxide synthase by regulating nitric oxide feedback inhibition [J].
Adak, S ;
Crooks, C ;
Wang, Q ;
Crane, BR ;
Tainer, JA ;
Getzoff, ED ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (38) :26907-26911
[4]   Neuronal nitric-oxide synthase mutant (Ser-1412 → Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis [J].
Adak, S ;
Santolini, J ;
Tikunova, S ;
Wang, Q ;
Johnson, JD ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (02) :1244-1252
[5]   Role of reductase domain cluster 1 acidic residues in neuronal nitric-oxide synthase - characterization of the FMN-free enzyme [J].
Adak, S ;
Ghosh, S ;
Abu-Soud, HM ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22313-22320
[6]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[7]   CHARACTERIZATION OF RAT NEURONAL NITRIC-OXIDE SYNTHASE EXPRESSED IN SACCHAROMYCES-CEREVISIAE [J].
BLACK, SM ;
DEMONTELLANO, PRO .
DNA AND CELL BIOLOGY, 1995, 14 (09) :789-794
[8]   Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms -: Role of protein kinase A [J].
Boo, YC ;
Sorescu, G ;
Boyd, N ;
Shiojima, L ;
Walsh, K ;
Du, J ;
Jo, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3388-3396
[9]   ISOLATION OF NITRIC-OXIDE SYNTHETASE, A CALMODULIN-REQUIRING ENZYME [J].
BREDT, DS ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (02) :682-685
[10]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718