Myoglobin scavenges peroxynitrite without being significantly nitrated

被引:63
作者
Herold, S [1 ]
Shivashankar, K [1 ]
Mehl, M [1 ]
机构
[1] ETH Honggerberg, HCI, Lab Anorgan Chem, CH-8093 Zurich, Switzerland
关键词
D O I
10.1021/bi026046h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have analyzed in detail hemoglobin (Hb) and myoglobin (Mb) after treatment of different forms of these proteins with variable amounts of peroxynitrite. HPLC analyses of the peroxynitrite-treated proteins subjected either to acid hydrolysis or Pronase digestion showed that only very low quantities of 3-nitrotyrosine are formed when equivalent amounts of peroxynitrite are allowed to react with the oxy form of these proteins. Comparable amounts of nitrated amino acids are formed when metMb and metHb are treated with peroxynitrite under analogous conditions, but significantly larger yields are observed with apoMb and metMbCN. Interestingly, in addition we found that also the tryptophan residues of Mb and Hb are nitrated to a low but detectable extent. Taken together, our data suggest that the heme center of Mb may act as an efficient scavenger of peroxynitrite, protecting the globin from nitration. As peroxynitrite can irreversibly inhibit cytochrome c oxidase, oxyMb may utilize an additional important pathway to maintain mitochondrial respiration, that is, rapidly react with peroxynitrite and thus prevent nitration of other cellular components.
引用
收藏
页码:13460 / 13472
页数:13
相关论文
共 74 条
[1]   Peroxynitrite-mediated heme oxidation and protein modification of native and chemically modified hemoglobins [J].
Alayash, AI ;
Ryan, BAB ;
Cashon, RE .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1998, 349 (01) :65-73
[2]   Peroxynitrite-dependent tryptophan nitration [J].
Alvarez, B ;
Rubbo, H ;
Kirk, M ;
Barnes, S ;
Freeman, BA ;
Radi, R .
CHEMICAL RESEARCH IN TOXICOLOGY, 1996, 9 (02) :390-396
[3]  
[Anonymous], 1996, Methods in nitric oxide research
[4]  
Antonini E., 1971, HEMOGLOBIN MYOGLOBIN
[5]   Requirements for heme and thiols for the nonenzymatic modification of nitrotyrosine [J].
Balabanli, B ;
Kamisaki, Y ;
Martin, E ;
Murad, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13136-13141
[6]   Catalysis of peroxynitrite reactions by manganese and iron porphyrins [J].
Balavoine, GGA ;
Geletii, YV ;
Bejan, D .
NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 1997, 1 (06) :507-521
[7]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[8]   KINETICS OF SUPEROXIDE DISMUTASE-CATALYZED AND IRON-CATALYZED NITRATION OF PHENOLICS BY PEROXYNITRITE [J].
BECKMAN, JS ;
ISCHIROPOULOS, H ;
ZHU, L ;
VANDERWOERD, M ;
SMITH, C ;
CHEN, J ;
HARRISON, J ;
MARTIN, JC ;
TSAI, M .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 298 (02) :438-445
[9]   EXTENSIVE NITRATION OF PROTEIN TYROSINES IN HUMAN ATHEROSCLEROSIS DETECTED BY IMMUNOHISTOCHEMISTRY [J].
BECKMANN, JS ;
YE, YZ ;
ANDERSON, PG ;
CHEN, J ;
ACCAVITTI, MA ;
TARPEY, MM ;
WHITE, CR ;
BECKMAN, JS .
BIOLOGICAL CHEMISTRY HOPPE-SEYLER, 1994, 375 (02) :81-88
[10]   Pressure-induced perturbation of apomyoglobin structure: Fluorescence studies on native and acidic compact forms [J].
Bismuto, E ;
Sirangelo, I ;
Irace, G ;
Gratton, E .
BIOCHEMISTRY, 1996, 35 (04) :1173-1178