Analysis of α-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation

被引:215
作者
Strelkov, SV [1 ]
Burkhard, P [1 ]
机构
[1] Univ Basel, Biozentrum, Maurice E Muller Struct Biol, CH-4056 Basel, Switzerland
关键词
coiled coil; computer program; Crick parameters; heptad repeat; protein conformation; skips; stutters;
D O I
10.1006/jsbi.2002.4454
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
alpha-Helical coiled coils represent a widespread protein structure motif distinguished by a seven-residue periodicity of apolar residues in the primary sequence. A characteristic "knobs-into-holes" packing of these residues into a hydrophobic core results in a superhelical, usually left-handed, rope of two or more alpha-helices. Such a geometry can be parameterized. For this purpose, a new computer program, TWISTER, was developed. With the three-dimensional coordinates as input, TWISTER uses an original algorithm to determine the local coiled-coil parameters as a function of residue number. In addition, heptad positions are assigned based on structural criteria. It is known that frequently encountered discontinuities in the heptad repeat, such as stutters and skips, can be tolerated within a continuous coiled coil but result in a local distortion of its geometry. This was explored in detail with the help of TWISTER for several two- and three-stranded coiled coils. Depending on the particular protein, stutters were found to be compensated locally by an unwinding of the superhelix, alpha-helical unwinding, or both. In the first case, there is often a local switch from a left-handed to a right-handed superhelix. In general, the geometrical distortion is confined to about two a-helical turns at either side of the stutter. Furthermore, stutters result in a local increase of the coiled-coil radius. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:54 / 64
页数:11
相关论文
共 21 条
[1]   Buried polar residues in coiled-coil interfaces [J].
Akey, DL ;
Malashkevich, VN ;
Kim, PS .
BIOCHEMISTRY, 2001, 40 (21) :6352-6360
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]  
Brown JH, 1996, PROTEINS, V26, P134
[4]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[5]   The coiled-coil trigger site of the rod domain of cortexillin I unveils a distinct network of interhelical and intrahelical salt bridges [J].
Burkhard, P ;
Kammerer, RA ;
Steinmetz, MO ;
Bourenkov, GP ;
Aebi, U .
STRUCTURE, 2000, 8 (03) :223-230
[6]   Coiled coils: a highly versatile protein folding motif [J].
Burkhard, P ;
Stetefeld, J ;
Strelkov, SV .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :82-88
[7]   HELIX TO HELIX PACKING IN PROTEINS [J].
CHOTHIA, C ;
LEVITT, M ;
RICHARDSON, D .
JOURNAL OF MOLECULAR BIOLOGY, 1981, 145 (01) :215-250
[8]   THE PACKING OF ALPHA-HELICES - SIMPLE COILED-COILS [J].
CRICK, FHC .
ACTA CRYSTALLOGRAPHICA, 1953, 6 (8-9) :689-697
[9]   IS ALPHA-KERATIN A COILED COIL [J].
CRICK, FHC .
NATURE, 1952, 170 (4334) :882-883
[10]   CRYSTAL-STRUCTURE OF AN ISOLEUCINE-ZIPPER TRIMER [J].
HARBURY, PB ;
KIM, PS ;
ALBER, T .
NATURE, 1994, 371 (6492) :80-83