Sprouting traits and population structure of co-occurring Castanopsis species in an evergreen broad-leaved forest in southern China

被引:65
作者
Nanami, S [1 ]
Kawaguchi, H
Tateno, R
Li, CH
Katagiri, S
机构
[1] Osaka City Univ, Grad Sch Sci, Osaka 5588585, Japan
[2] Shimane Univ, Fac Life & Environm Sci, Matsue, Shimane 6908504, Japan
[3] Kyoto Univ, Grad Sch Agr, Kyoto 6068502, Japan
[4] Chinese Acad Sci, Commiss Integrated Survey Nat Resources, Beijing 100101, Peoples R China
基金
日本学术振兴会;
关键词
coexistence; persistence; regeneration; size distribution; spatial distribution;
D O I
10.1111/j.1440-1703.2004.00643.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The role of sprouting in regeneration was compared betweenfour co-occurring Castanopsis species in an evergreen broad-leavedforest in southern China. We considered the largest stem of an individualto be the main stem, while all of the other stems were consideredto be sprouts. To evaluate the degree of dependence on sproutingin the regeneration of each species, we measured the ratio of thenumber of all sprouts to the number of main stems in a population.The ratio was 4.3 in Castanopsis fordii and > 1in Castanopsis fabri and Castanopsis carlesii, althoughit was < 1 in Castanopsis fargesii. The ratioof the number of all sprouts to the number of main stems in a populationwas represented by the product of two factors of sprouting ability:the proportion of sprouting individuals among all individuals andthe number of sprouts per sprouting individual. The proportion ofsprouting individuals among all individuals differed significantlyamong the four species, while the number of sprouts per sproutingindividual did not. Specific variations in sprouting traits werein agreement with the population structure of each species. Specieswith fewer small individuals in the size distribution had a higherratio than species with L-shaped distribution. Furthermore, specieswith a clumped distribution had a larger ratio than species thatwere randomly distributed. These results suggested that specieswhose recruitment by seedlings was temporally and spatially restrictedwere relatively more dependent on sprouting in the regeneration.The specific gradient of sprouting ability and the relative dependencyon sprouts to maintain a population can enhance the coexistenceof these four congeneric species.
引用
收藏
页码:341 / 348
页数:8
相关论文
共 52 条
[1]  
*AC SIN NANJ I SOI, 1980, SOILS CHIN
[2]  
[Anonymous], 1996, POPULATION COMMUNITY
[3]   Resprouting as a life history strategy in woody plant communities [J].
Bellingham, PJ ;
Sparrow, AD .
OIKOS, 2000, 89 (02) :409-416
[4]   The effects of a typhoon on Japanese warm temperate rainforests [J].
Bellingham, PJ ;
Kohyama, T ;
Aiba, S .
ECOLOGICAL RESEARCH, 1996, 11 (03) :229-247
[5]   SPROUTING OF TREES IN JAMAICAN MONTANE FORESTS, AFTER A HURRICANE [J].
BELLINGHAM, PJ ;
TANNER, EVJ ;
HEALEY, JR .
JOURNAL OF ECOLOGY, 1994, 82 (04) :747-758
[6]   Ecology of sprouting in woody plants: the persistence niche [J].
Bond, WJ ;
Midgley, JJ .
TRENDS IN ECOLOGY & EVOLUTION, 2001, 16 (01) :45-51
[7]   ASEXUAL REPRODUCTION - FURTHER CONSIDERATION [J].
COOK, RE .
AMERICAN NATURALIST, 1979, 113 (05) :769-772
[8]  
*ED COMM FOR JINGX, 1986, FOR JINGX
[9]   CURRENT REGENERATIVE CAPACITY OF THE NORTHERN CANADIAN TREES, KEEWATIN, NWT, CANADA - SOME PRELIMINARY-OBSERVATIONS [J].
ELLIOTT, DL .
ARCTIC AND ALPINE RESEARCH, 1979, 11 (02) :243-251
[10]   Microtopography and distribution of canopy trees in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan [J].
Enoki, T .
ECOLOGICAL RESEARCH, 2003, 18 (02) :103-113