Charge orbits of symmetric special geometries and attractors

被引:125
作者
Bellucci, Stefano
Ferrara, Sergio
Gunaydin, Murat
Marrani, Alessio
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[2] CERN, Dept Phys, Theory Unit, CH-1211 Geneva, Switzerland
[3] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA
[4] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[5] Museo Storico Fis, I-00184 Rome, Italy
[6] Ctr Studi & Ric Enrico Fermi, I-00184 Rome, Italy
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2006年 / 21卷 / 25期
基金
美国国家科学基金会;
关键词
black holes; attractors; supergravity; special Kahler geometry;
D O I
10.1142/S0217751X06034355
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study the critical points of the black hole scalar potential VBH in N = 2, d = 4 super-gravity coupled to n(V) vector multiplets, in an asymptotically flat extremal black hole background described by a 2(n(V) + 1)-dimensional dyonic charge vector and (complex) scalar fields which are coordinates of a special Kahler manifold. For the case of homogeneous symmetric spaces, we find three general classes of regular attractor solutions with nonvanishing Bekenstein-Hawking entropy. They correspond to three (inequivalent) classes of orbits of the charge vector, which is in a 2(n(V) + 1)-dimensional representation RV of the U-duality group. Such orbits are nondegenerate, namely they have nonvanishing quartic invariant (for rank-3 spaces). Other than the 1/2-BPS one, there are two other distinct non-BPS classes of charge orbits, one of which has vanishing central charge. The three species of solutions to the N = 2 extremal black hole attractor equations give rise to different mass spectra of the scalar fluctuations, whose pattern can be inferred by using invariance properties of the critical Points Of VBH and some group theoretical considerations on homogeneous symmetric special Kahler geometry.
引用
收藏
页码:5043 / 5097
页数:55
相关论文
共 78 条
[41]  
Gunaydin A, 2005, AIP CONF PROC, V767, P268, DOI 10.1063/1.1923339
[42]   BPS black holes, quantum attractor flows, and automorphic forms [J].
Gunaydin, M ;
Neitzke, A ;
Pioline, B ;
Waldron, A .
PHYSICAL REVIEW D, 2006, 73 (08)
[43]  
Günaydin M, 2005, J HIGH ENERGY PHYS
[44]  
Günaydin M, 2005, J HIGH ENERGY PHYS
[45]  
Günaydin M, 2003, J HIGH ENERGY PHYS
[46]   EXCEPTIONAL SUPERGRAVITY THEORIES AND THE MAGIC SQUARE [J].
GUNAYDIN, M ;
SIERRA, G ;
TOWNSEND, PK .
PHYSICS LETTERS B, 1983, 133 (1-2) :72-76
[47]   GAUGING THE D=5 MAXWELL-EINSTEIN SUPERGRAVITY THEORIES - MORE ON JORDAN ALGEBRAS [J].
GUNAYDIN, M ;
SIERRA, G ;
TOWNSEND, PK .
NUCLEAR PHYSICS B, 1985, 253 (3-4) :573-608
[48]   MOUFANG PLANE AND OCTONIONIC QUANTUM-MECHANICS [J].
GUNAYDIN, M ;
PIRON, C ;
RUEGG, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (01) :69-85
[49]   THE GEOMETRY OF N=2 MAXWELL-EINSTEIN SUPERGRAVITY AND JORDAN ALGEBRAS [J].
GUNAYDIN, M ;
SIERRA, G ;
TOWNSEND, PK .
NUCLEAR PHYSICS B, 1984, 242 (01) :244-268
[50]   MORE ON D = 5 MAXWELL-EINSTEIN SUPERGRAVITY - SYMMETRICAL-SPACES AND KINKS [J].
GUNAYDIN, M ;
SIERRA, G ;
TOWNSEND, PK .
CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (05) :763-771