Endogenous DNA abasic sites cause cell death in the absence of Apn1, Apn2 and Rad1/Rad10 in Saccharomyces cerevisiae

被引:103
作者
Guillet, M [1 ]
Boiteux, S [1 ]
机构
[1] CEA, DSV, Dept Radiobiol & Radiopathol, CNRS,UMR Radiobiol Mol & Cellulaire 217, F-92265 Fontenay Aux Roses, France
关键词
abasic sites; Apn1; Apn2; cell death; Rad1; Rad10; S.cerevisiae;
D O I
10.1093/emboj/21.11.2833
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Saccharomyces cerevisiae, mutations in APN1, APN2 and either RAD1 or RAD10 genes are synthetic lethal. In fact, apn1 apn2 rad1 triple mutants can form microcolonies of similar to300 cells. Expression of Nfo, the bacterial homologue of Apn1, suppresses the lethality. Turning off the expression of Nfo induces G(2)/M cell cycle arrest in an apn1 apn2 rad1 triple mutant. The activation of this checkpoint is RAD9 dependent and allows residual DNA repair. The Mus81/Mms4 complex was identified as one of these back-up repair activities. Furthermore, inactivation of Ntg1, Ntg2 and Ogg1 DNA N-glycosylase/AP lyases in the apn1 apn2 rad1 background delayed lethality, allowing the formation of minicolonies of similar to10(5) cells. These results demonstrate that, under physiological conditions, endogenous DNA damage causes death in cells deficient in Apn1, Apn2 and Rad1/Rad10 proteins. We propose a model in which endogenous DNA abasic sites are converted into 3'-blocked single-strand breaks (SSBs) by DNA N-glycosylases/AP lyases. Therefore, we suggest that the essential and overlapping function of Apn1, Apn2, Rad1/Rad10 and Mus81/Mms4 is to repair 3'-blocked SSBs using their 3'-phosphodiesterase activity or their 3'-flap endonuclease activity, respectively.
引用
收藏
页码:2833 / 2841
页数:9
相关论文
共 45 条
[1]  
[Anonymous], 1998, Handbook of child psychology (5th ed.): Vol. 2. Cognition, perception
[2]   YEAST RAD14 AND HUMAN XERODERMA-PIGMENTOSUM GROUP-A DNA-REPAIR GENES ENCODE HOMOLOGOUS PROTEINS [J].
BANKMANN, M ;
PRAKASH, L ;
PRAKASH, S .
NATURE, 1992, 355 (6360) :555-558
[3]   SPECIFIC CLEAVAGE OF MODEL RECOMBINATION AND REPAIR INTERMEDIATES BY THE YEAST RAD1-RAD10 DNA ENDONUCLEASE [J].
BARDWELL, AJ ;
BARDWELL, L ;
TOMKINSON, AE ;
FRIEDBERG, EC .
SCIENCE, 1994, 265 (5181) :2082-2085
[4]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[5]  
Bennett RAO, 1999, MOL CELL BIOL, V19, P1800
[6]  
Cadet J, 1997, Rev Physiol Biochem Pharmacol, V131, P1
[7]   Mammalian DNA single-strand break repair: an X-ra(y)ted affair [J].
Caldecott, KW .
BIOESSAYS, 2001, 23 (05) :447-455
[8]   ROLE OF THE RAD1 AND RAD10 PROTEINS IN NUCLEOTIDE EXCISION-REPAIR AND RECOMBINATION [J].
DAVIES, AA ;
FRIEDBERG, EC ;
TOMKINSON, AE ;
WOOD, RD ;
WEST, SC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :24638-24641
[9]  
DEMPLE B, 1994, ANNU REV BIOCHEM, V63, P915, DOI 10.1146/annurev.biochem.63.1.915
[10]   REMOVAL OF NONHOMOLOGOUS DNA ENDS IN DOUBLE-STRAND BREAK RECOMBINATION - THE ROLE OF THE YEAST ULTRAVIOLET REPAIR GENE RAD1 [J].
FISHMANLOBELL, J ;
HABER, JE .
SCIENCE, 1992, 258 (5081) :480-484