The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures

被引:91
作者
Drennan, CL [1 ]
Doukov, TI
Ragsdale, SW
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA
[3] Univ Nebraska, Dept Biochem, Beadle Ctr, Lincoln, NE 68588 USA
来源
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY | 2004年 / 9卷 / 05期
关键词
acetyl-CoA synthase; carbon monoxide dehydrogenase; iron-sulfur clusters; metalloproteins; nickel;
D O I
10.1007/s00775-004-0563-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eight Ni proteins are known and three of these, CO dehydrogenase (CODH), acetyl-CoA synthase (ACS), and hydrogenase, are Ni-Fe-S proteins. In the last three years, the long-awaited structures of CODH and ACS have been solved. The bioinorganic community was shocked, as the structures of the active sites of CODH and ACS, the C- and A-cluster, respectively, which each had been predicted to consist of a [Fe4S4] cluster bridged to a single Ni, revealed unexpected compositions and arrangements. Crystal structures of ACS revealed major differences in protein conformation and in A-cluster composition; for example, a [Fe4S4] cluster bridged to a binuclear center in which one of the metal binding sites was occupied by Ni, Cu, or Zn. Recent studies have revealed Ni-Ni to be the active state, unveiled the source of the heterogeneity that had plagued studies of CODH/ACS for decades, and produced a metal-replacement strategy to generate highly active and nearly homogeneous enzyme.
引用
收藏
页码:511 / 515
页数:5
相关论文
共 22 条
[1]   Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and mechanism of acetyl coenzyme A synthesis [J].
Barondeau, DP ;
Lindahl, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (17) :3959-3970
[2]   Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper [J].
Bramlett, MR ;
Tan, XS ;
Lindahl, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (31) :9316-9317
[3]   Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase [J].
Darnault, C ;
Volbeda, A ;
Kim, EJ ;
Legrand, P ;
Vernéde, X ;
Lindahl, PA ;
Fontecilla-Camps, JC .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (04) :271-279
[4]   Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster [J].
Dobbek, H ;
Svetlitchnyi, V ;
Gremer, L ;
Huber, R ;
Meyer, O .
SCIENCE, 2001, 293 (5533) :1281-1285
[5]   A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase [J].
Doukov, TI ;
Iverson, TM ;
Seravalli, J ;
Ragsdale, SW ;
Drennan, CL .
SCIENCE, 2002, 298 (5593) :567-572
[6]   Life on carbon monoxide:: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase [J].
Drennan, CL ;
Heo, JY ;
Sintchak, MD ;
Schreiter, E ;
Ludden, PW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :11973-11978
[7]  
ENSIGN SA, 1991, J BIOL CHEM, V266, P18395
[8]   Nickel in subunit β of the acetyl-CoA decarbonylase/synthase multienzyme complex in methanogens [J].
Gencic, S ;
Grahame, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (08) :6101-6110
[9]   Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold [J].
Huang, WJ ;
Jia, J ;
Cummings, J ;
Nelson, M ;
Schneider, G ;
Lindqvist, Y .
STRUCTURE, 1997, 5 (05) :691-699
[10]   Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum [J].
Maynard, EL ;
Lindahl, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (39) :9221-9222