On the addition of integral action to port-controlled Hamiltonian systems

被引:135
作者
Donaire, Alejandro [1 ,2 ]
Junco, Sergio
机构
[1] Univ Nacl Rosario, Fac Ingn, FCEIA, Dept Control, RA-2000 Rosario, Santa Fe, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
Nonlinear control; Port-Hamiltonian systems; Integral control; Permanent-magnet synchronous motor control; PASSIVITY-BASED CONTROL; DAMPING ASSIGNMENT; INTERCONNECTION;
D O I
10.1016/j.automatica.2009.04.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A technique that provides closed loop integral action depending on the passive outputs of port-controlled Hamiltonian systems is already available. This paper addresses a new method that allows us to add integral action also on system variables having relative degree higher than one, while still preserving the Hamiltonian form and, thus, closed loop stability. The new approach is applied to design speed regulation controllers for the permanent magnet synchronous motor. Closed loop stability and asymptotic rejection of unknown piecewise constant load torques are formally proved. This theoretically predicted control system performance is illustrated via simulation experiments, which also show that the properties hold under parameter uncertainties. This is in line with the usual practice of including integral action in a controller with the aim of improving its closed loop robustness. The fact that the method enhances the range of possible integral actions in the controller, enriched with this robustness property, allows us to assess it as a practically important complement to the well-known interconnection and damping assignment techniques developed in the framework of port-controlled Hamiltonian systems. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1910 / 1916
页数:7
相关论文
共 15 条
[1]  
[Anonymous], L2 GAIN PASSIVITY TE
[2]  
BATLLE C, 2006, IOCDTP200625 UPC
[3]   Simultaneous interconnection and damping assignment passivity-based control:: Two practical examples [J].
Batlle, Carles ;
Doria-Cerezo, Arnau ;
Espinosa-Perez, Gerardo ;
Ortega, Romeo .
Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, 2007, 366 :157-169
[4]   Geometric modeling of nonlinear RLC circuits [J].
Blankenstein, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (02) :396-404
[5]  
Borutzky W., 2004, BOND GRAPH METHODOLO
[6]   On representations and integrability of mathematical structures in energy-conserving physical systems [J].
Dalsmo, M ;
Van der Schaft, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 37 (01) :54-91
[7]   Energy shaping, interconnection and damping assignment, and integral control in the bond graph domain [J].
Donaire, Alejandro ;
Junco, Sergio .
SIMULATION MODELLING PRACTICE AND THEORY, 2009, 17 (01) :152-174
[8]   Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations [J].
Fujimoto, K ;
Sakurama, K ;
Sugie, T .
AUTOMATICA, 2003, 39 (12) :2059-2069
[9]  
Khalil H. K., 2002, Nonlinear systems, V3
[10]  
LANCZOS C, 1960, VARIATIONAL PRINCIPL