A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity

被引:98
作者
Wyant, Matthew C.
Bretherton, Christopher S.
Bacmeister, Julio T.
Kiehl, Jeffrey T.
Held, Isaac M.
Zhao, Ming
Klein, Stephen A.
Soden, Brian J.
机构
[1] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
[2] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA
[3] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[4] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
[5] Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA
[6] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Meteorol & Phys Oceanog, Miami, FL 33149 USA
关键词
D O I
10.1007/s00382-006-0138-4
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Low-latitude cloud distributions and cloud responses to climate perturbations are compared in near-current versions of three leading U.S. AGCMs, the NCAR CAM 3.0, the GFDL AM2.12b, and the NASA GMAO NSIPP-2 model. The analysis technique of Bony et al. (Clim Dyn 22:71-86, 2004) is used to sort cloud variables by dynamical regime using the monthly mean pressure velocity omega at 500 hPa from 30S to 30N. All models simulate the climatological monthly mean top-of-atmosphere longwave and shortwave cloud radiative forcing (CRF) adequately in all omega-regimes. However, they disagree with each other and with ISCCP satellite observations in regime-sorted cloud fraction, condensate amount, and cloud-top height. All models have too little cloud with tops in the middle troposphere and too much thin cirrus in ascent regimes. In subsidence regimes one model simulates cloud condensate to be too near the surface, while another generates condensate over an excessively deep layer of the lower troposphere. Standardized climate perturbation experiments of the three models are also compared, including uniform SST increase, patterned SST increase, and doubled CO2 over a mixed layer ocean. The regime-sorted cloud and CRF perturbations are very different between models, and show lesser, but still significant, differences between the same model simulating different types of imposed climate perturbation. There is a negative correlation across all general circulation models (GCMs) and climate perturbations between changes in tropical low cloud cover and changes in net CRF, suggesting a dominant role for boundary layer cloud in these changes. For some of the cases presented, upper-level clouds in deep convection regimes are also important, and changes in such regimes can either reinforce or partially cancel the net CRF response from the boundary layer cloud in subsidence regimes. This study highlights the continuing uncertainty in both low and high cloud feedbacks simulated by GCMs.
引用
收藏
页码:261 / 279
页数:19
相关论文
共 64 条
  • [1] The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations
    Anderson, JL
    Balaji, V
    Broccoli, AJ
    Cooke, WF
    Delworth, TL
    Dixon, KW
    Donner, LJ
    Dunne, KA
    Freidenreich, SM
    Garner, ST
    Gudgel, RG
    Gordon, CT
    Held, IM
    Hemler, RS
    Horowitz, LW
    Klein, SA
    Knutson, TR
    Kushner, PJ
    Langenhost, AR
    Lau, NC
    Liang, Z
    Malyshev, SL
    Milly, PCD
    Nath, MJ
    Ploshay, JJ
    Ramaswamy, V
    Schwarzkopf, MD
    Shevliakova, E
    Sirutis, JJ
    Soden, BJ
    Stern, WF
    Thompson, LA
    Wilson, RJ
    Wittenberg, AT
    Wyman, BL
    [J]. JOURNAL OF CLIMATE, 2004, 17 (24) : 4641 - 4673
  • [2] On dynamic and thermodynamic components of cloud changes
    Bony, S
    Dufresne, JL
    Le Treut, H
    Morcrette, JJ
    Senior, C
    [J]. CLIMATE DYNAMICS, 2004, 22 (2-3) : 71 - 86
  • [3] Bretherton C., 2004, US CLIVAR VARIATIONS, V2, P1
  • [4] INTERPRETATION OF CLOUD-CLIMATE FEEDBACK AS PRODUCED BY 14 ATMOSPHERIC GENERAL-CIRCULATION MODELS
    CESS, RD
    POTTER, GL
    BLANCHET, JP
    BOER, GJ
    GHAN, SJ
    KIEHL, JT
    LETREUT, H
    LI, ZX
    LIANG, XZ
    MITCHELL, JFB
    MORCRETTE, JJ
    RANDALL, DA
    RICHES, MR
    ROECKNER, E
    SCHLESE, U
    SLINGO, A
    TAYLOR, KE
    WASHINGTON, WM
    WETHERALD, RT
    YAGAI, I
    [J]. SCIENCE, 1989, 245 (4917) : 513 - 516
  • [5] Cloud feedback in atmospheric general circulation models: An update
    Cess, RD
    Zhang, MH
    Ingram, WJ
    Potter, GL
    Alskseev, V
    Barker, HW
    Cohen-Solal, E
    Colman, RA
    Dazlich, DA
    Del Genio, AD
    Dix, MR
    Dymnikov, V
    Esch, M
    Fowler, LD
    Fraser, JR
    Galin, V
    Gates, WL
    Hack, JJ
    Kiehl, JT
    Le Treut, H
    Lo, KKW
    McAvaney, BJ
    Meleshko, VP
    Morcrette, JJ
    Randall, DA
    Roeckner, E
    Royer, JF
    Schlesinger, ME
    Sporyshev, PV
    Timbal, B
    Volodin, EM
    Taylor, KE
    Wang, W
    Wetherald, RT
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D8) : 12791 - 12794
  • [6] CHARLOCK TP, 1985, J ATMOS SCI, V42, P1408, DOI 10.1175/1520-0469(1985)042<1408:TAFACR>2.0.CO
  • [7] 2
  • [8] CHEN C, 1987, J ATMOS SCI, V44, P2951, DOI 10.1175/1520-0469(1987)044<2951:TPOTMS>2.0.CO
  • [9] 2
  • [10] COLLINS WD, 2004, NCARTN464PLUSSTR