Natural downsizing in hierarchical galaxy formation

被引:235
作者
Neistein, Eyal [1 ]
van den Bosch, Frank C.
Dekel, Avishai
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Max Planck Inst Astron, D-69117 Heidelberg, Germany
关键词
galaxies : elliptical and lenticular; cd; galaxies : haloes; cosmology : theory; dark matter;
D O I
10.1111/j.1365-2966.2006.10918.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Stellar-population analyses of today's galaxies show 'downsizing', where the stars in more massive galaxies tend to have formed earlier and over a shorter time-span. We show that this phenomenon is not necessarily 'antihierarchical' but rather has its natural roots in the bottom-up clustering process of dark-matter haloes. While the main progenitor does indeed show an opposite effect, the integrated mass in all the progenitors down to a given minimum mass shows a robust downsizing that is qualitatively similar to what has been observed. These results are derived analytically from the standard extended Press-Schechter (EPS) theory, and are confirmed by merger trees based on EPS or drawn from N-body simulations. The downsizing is valid for any minimum mass, as long as it is the same for all haloes at any given time, but the effect is weaker for smaller minimum mass. If efficient star formation is triggered by atomic cooling, then a minimum halo mass arises naturally from the minimum virial temperature for cooling, T similar or equal to 10(4) K, though for such a small minimum mass the effect is weaker than observed. Baryonic feedback effects, which are expected to stretch the duration of star formation in small galaxies and shut it down in massive haloes at late epochs, are likely to play a subsequent role in shaping up the final downsizing behaviour. Other appearances of downsizing, such as the decline with time of the typical mass of star-forming galaxies, may not be attributed to the gravitational clustering process but rather arise from the gas processes.
引用
收藏
页码:933 / 948
页数:16
相关论文
共 48 条
[1]   THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM-FIELDS [J].
BARDEEN, JM ;
BOND, JR ;
KAISER, N ;
SZALAY, AS .
ASTROPHYSICAL JOURNAL, 1986, 304 (01) :15-61
[2]   Evolution of the Hubble sequence in hierarchical models for galaxy formation [J].
Baugh, CM ;
Cole, S ;
Frenk, CS .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 283 (04) :1361-1378
[3]   Toward an understanding of the rapid decline of the cosmic star formation rate [J].
Bell, EF ;
Papovich, C ;
Wolf, C ;
Le Floc'h, E ;
Caldwell, JAR ;
Barden, M ;
Egami, E ;
McIntosh, DH ;
Meisenheimer, K ;
Pérez-González, PG ;
Rieke, GH ;
Rieke, MJ ;
Rigby, JR ;
Rix, HW .
ASTROPHYSICAL JOURNAL, 2005, 625 (01) :23-36
[4]   The properties of spiral galaxies: confronting hierarchical galaxy formation models with observations [J].
Bell, EF ;
Baugh, CM ;
Cole, S ;
Frenk, CS ;
Lacey, CG .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 343 (02) :367-384
[5]   On the origin of the galaxy luminosity function [J].
Binney, J .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 347 (04) :1093-1096
[6]   Virial shocks in galactic haloes? [J].
Birnboim, Y ;
Dekel, A .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 345 (01) :349-364
[7]   EXCURSION SET MASS FUNCTIONS FOR HIERARCHICAL GAUSSIAN FLUCTUATIONS [J].
BOND, JR ;
COLE, S ;
EFSTATHIOU, G ;
KAISER, N .
ASTROPHYSICAL JOURNAL, 1991, 379 (02) :440-460
[8]   Breaking the hierarchy of galaxy formation [J].
Bower, R. G. ;
Benson, A. J. ;
Malbon, R. ;
Helly, J. C. ;
Frenk, C. S. ;
Baugh, C. M. ;
Cole, S. ;
Lacey, C. G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 370 (02) :645-655
[9]   THE EVOLUTION OF GROUPS OF GALAXIES IN THE PRESS-SCHECHTER FORMALISM [J].
BOWER, RG .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1991, 248 (02) :332-352
[10]   The mass assembly and star formation characteristics of field galaxies of known morphology [J].
Brinchmann, J ;
Ellis, RS .
ASTROPHYSICAL JOURNAL, 2000, 536 (02) :L77-L80