Advanced Imaging assessment of bone quality

被引:73
作者
Genant, Harry K. [1 ]
Jiang, Yebin [1 ]
机构
[1] Univ Calif San Francisco, Osteoporosis & Arthrit Res Grp, San Francisco, CA 94143 USA
来源
SKELETAL DEVELOPMENT AND REMODELING IN HEALTH, DISEASE, AND AGING | 2006年 / 1068卷
关键词
osteoporosis; micro-imaging; micro-CT; micro-MRI; bone microarchitecture; bone quality;
D O I
10.1196/annals.1346.038
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Noninvasive and/or nondestructive techniques can provide structural information about bone, beyond simple bone densitometry. While the latter provides important information about osteoporotic fracture risk, many studies indicate that bone mineral density (BMD) only partly explains bone strength. Quantitative assessment of macrostructural characteristics, such as geometry, and microstructural features, such as relative trabecular volume, trabecular spacing, and connectivity, may improve our ability to estimate bone strength. Methods for quantitatively assessing macrostructure include (besides conventional radiographs) dual X ray absorptiometry (DXA) and computed tomography (CT), particularly volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), microcomputed tomography (micro-CT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (micro-MR). vQCT, hrCT, and hrMR are generally applicable in vivo; micro-CT and micro-MR are principally applicable in vitro. Despite progress, problems remain. The important balances between spatial resolution and sampling size, or between signal-to-noise and radiation dose or acquisition time, need further consideration, as do the complexity and expense of the methods versus their availability and accessibility. Clinically, the challenges for bone imaging include balancing the advantages of simple bone densitometry versus the more complex architectural features of bone, or the deeper research requirements versus the broader clinical needs. The biological differences between the peripheral appendicular skeleton and the central axial skeleton must be further addressed. Finally, the relative merits of these sophisticated imaging techniques must be weighed with respect to their applications as diagnostic procedures, requiring high accuracy or reliability, versus their monitoring applications, requiring high precision or reproducibility.
引用
收藏
页码:410 / 428
页数:19
相关论文
共 84 条
[1]  
ANTICH PP, 1994, J BONE MINER RES S1, V9, P327
[2]  
Bauer JS, 2004, J BONE MINER RES, V19, pS169
[3]   Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect [J].
Bergo, MO ;
Gavino, B ;
Ross, J ;
Schmidt, WK ;
Hong, C ;
Kendall, LV ;
Mohr, A ;
Meta, M ;
Genant, H ;
Jiang, YB ;
Wisner, ER ;
van Bruggen, N ;
Carano, RAD ;
Michaelis, S ;
Griffey, SM ;
Young, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :13049-13054
[4]   3D COMPUTED X-RAY TOMOGRAPHY OF HUMAN CANCELLOUS BONE AT 8 MU-M SPATIAL AND 10(-4) ENERGY RESOLUTION [J].
BONSE, U ;
BUSCH, F ;
GUNNEWIG, O ;
BECKMANN, F ;
PAHL, R ;
DELLING, G ;
HAHN, M ;
GRAEFF, W .
BONE AND MINERAL, 1994, 25 (01) :25-38
[5]  
Borah B, 2004, J BONE MINER RES, V19, pS308
[6]   Three-dimensional microimaging (MRμI and μCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis [J].
Borah, B ;
Gross, GJ ;
Dufresne, TE ;
Smith, TS ;
Cockman, MD ;
Chmielewski, PA ;
Lundy, MW ;
Hartke, JR ;
Sod, EW .
ANATOMICAL RECORD, 2001, 265 (02) :101-110
[7]   CT IMAGE-ANALYSIS OF THE VERTEBRAL TRABECULAR NETWORK INVIVO [J].
CHEVALIER, F ;
LAVALJEANTET, AM ;
LAVALJEANTET, M ;
BERGOT, C .
CALCIFIED TISSUE INTERNATIONAL, 1992, 51 (01) :8-13
[8]   RELATIONSHIP BETWEEN NMR TRANSVERSE RELAXATION, TRABECULAR BONE ARCHITECTURE, AND STRENGTH [J].
CHUNG, H ;
WEHRLI, FW ;
WILLIAMS, JL ;
KUGELMASS, SD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (21) :10250-10254
[9]  
CHUNG HW, 1995, J BONE MINER RES, V10, P1452
[10]  
CHUNG HW, 1995, J BONE MINER RES, V10, P803