Timing of Gene Expression Responses to Environmental Changes

被引:79
作者
Chechik, Gal [1 ]
Koller, Daphne [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
关键词
gene expression time courses; impulse model; transcription regulation; SACCHAROMYCES-CEREVISIAE; PROFILES; CELLS;
D O I
10.1089/cmb.2008.13TT
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cells respond to environmental perturbations with changes in their gene expression that are coordinated in magnitude and time. Timing information about individual genes, rather than clusters, provides a refined way to view and analyze responses, but it is hard to estimate accurately. To analyze response timing of individual genes, we developed a parametric model that captures the typical temporal responses: an abrupt early response followed by a second transition to a steady state. This impulse model explicitly represents natural temporal properties such as the onset and the offset time, and can be estimated robustly, as demonstrated by its superior ability to impute missing values in gene expression data. Using response time of individual genes, we identify relations between gene function and their response timing, showing, for example, how cytosolic ribosomal genes are only repressed after the mitochondrial ribosome is activated. We further demonstrate a strong relation between the binding affinity of a transcription factor and the activation timing of its targets, suggesting that graded binding affinities could be a widely used mechanism for controlling expression timing. See online Supplementary Material at www.liebertonline.com.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 38 条
[1]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[2]   Analysis of time-series gene expression data: Methods, challenges, and opportunities [J].
Androulakis, I. P. ;
Yang, E. ;
Almon, R. R. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2007, 9 :205-228
[3]   Clustering of gene expression data using a local shape-based similarity measure [J].
Balasubramaniyan, R ;
Hüllermeier, E ;
Weskamp, N ;
Kämper, J .
BIOINFORMATICS, 2005, 21 (07) :1069-1077
[4]   Continuous representations of time-series gene expression data [J].
Bar-Joseph, Z ;
Gerber, GK ;
Gifford, DK ;
Jaakkola, TS ;
Simon, I .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (3-4) :341-356
[5]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337
[6]   Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network [J].
Chechik, Gal ;
Oh, Eugene ;
Rando, Oliver ;
Weissman, Jonathan ;
Regev, Aviv ;
Koller, Daphne .
NATURE BIOTECHNOLOGY, 2008, 26 (11) :1251-1259
[7]   Dynamic complex formation during the yeast cell cycle [J].
de Lichtenberg, U ;
Jensen, LJ ;
Brunak, S ;
Bork, P .
SCIENCE, 2005, 307 (5710) :724-727
[8]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[9]   Clustering short time series gene expression data [J].
Ernst, J ;
Nau, GJ ;
Bar-Joseph, Z .
BIOINFORMATICS, 2005, 21 :I159-I168
[10]   Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p [J].
Gasch, AP ;
Huang, MX ;
Metzner, S ;
Botstein, D ;
Elledge, SJ ;
Brown, PO .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (10) :2987-3003