Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension

被引:92
作者
Xu, DL [1 ]
Chee, CY [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Prod Engn, Singapore 639798, Singapore
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.046218
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The ultimate state of projective synchronization is hardly predictable. A control algorithm is thus proposed to manipulate the synchronization in arbitrary dimension. The control law derived from the Lyapunov stability theory with the aid of slack variables is effective to any initial conditions. The method allows us to amplify and reduce the synchronized dynamics in any desired scale with tiny control inputs. Applications are illustrated for seven- and ten-dimensional chaotic systems.
引用
收藏
页码:5 / 046218
页数:5
相关论文
共 18 条
[1]   Complex dynamics and phase synchronization in spatially extended ecological systems [J].
Blasius, B ;
Huppert, A ;
Stone, L .
NATURE, 1999, 399 (6734) :354-359
[2]   Transforming signals with chaotic synchronization [J].
Carroll, TL ;
Heagy, JF ;
Pecora, LM .
PHYSICAL REVIEW E, 1996, 54 (05) :4676-4680
[3]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[4]   Amplification and displacement of chaotic attractors by means of unidirectional chaotic driving [J].
Gonzalez-Miranda, JM .
PHYSICAL REVIEW E, 1998, 57 (06) :7321-7324
[5]   Chaotic systems with a null conditional Lyapunov exponent under nonlinear driving [J].
GonzalezMiranda, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :R5-R8
[6]   COMMUNICATING WITH CHAOS [J].
HAYES, S ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1993, 70 (20) :3031-3034
[7]   Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1816-1819
[8]   Stability criterion for projective synchronization in three-dimensional chaotic systems [J].
Li, ZG ;
Xu, DL .
PHYSICS LETTERS A, 2001, 282 (03) :175-179
[9]   Projective synchronization in three-dimensional chaotic systems [J].
Mainieri, R ;
Rehacek, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3042-3045
[10]   Synchronization-based parameter estimation from time series [J].
Parlitz, U ;
Junge, L ;
Kocarev, L .
PHYSICAL REVIEW E, 1996, 54 (06) :6253-6259