Is face recognition not so unique after all?

被引:92
作者
Gauthier, I
Logothetis, NK
机构
[1] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
[2] Yale Univ, Sch Med, Dept Diagnost Radiol, New Haven, CT 06510 USA
关键词
D O I
10.1080/026432900380535
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
In monkeys, a number of different neocortical as well as limbic structures have cell populations that respond preferentially to face stimuli. Face selectivity is also differentiated within itself: Cells in the inferior temporal and prefrontal cortex tend to respond to facial identity, others in the upper bank of the superior temporal sulcus to gaze directions, and yet another population in the amygdala to facial expression. The great majority of these cells are sensitive to the entire configuration of a face. Changing the spatial arrangement of the facial features greatly diminishes the neurons' response. It would appear, then, that an entire neural network for faces exists which contains units highly selective to complex configurations and that respond to different aspects of the object "face." Given the vital importance efface recognition in primates, this may not come as a surprise. But are faces the only objects represented in this way? Behavioural work in humans suggests that nonface objects may be processed like faces if subjects are required to discriminate between visually similar exemplars and acquire sufficient expertise in doing so. Recent neuroimaging studies in humans indicate that level of categorisation and expertise interact to produce the specialisation for faces in the middle fusiform gyrus. Here we discuss some new evidence in the monkey suggesting that any arbitrary homogeneous class of artificial objects-which the animal has to individually learn, remember, and recognise again and again from among a large number of distractors sharing a number of common features with the target-can induce configurational selectivity in the response of neurons in the visual system. For all of the animals tested, the neurons from which we recorded were located in the anterior inferotemporal cortex. However, as we have only recorded from the posterior and anterior ventrolateral temporal lobe, other cells with a similar selectivity for the same objects may also exist in areas of the medial temporal lobe or in the limbic structures of the same "expert" monkeys. It seems that the encoding scheme used for faces may also be employed for other classes with similar properties. Thus, regarding their neural encoding, faces are not "special" but rather the "default special" class in the primate recognition system.
引用
收藏
页码:125 / 142
页数:18
相关论文
共 96 条
[1]  
[Anonymous], 1967, INTEGRATIVE ACTIVITY
[2]  
BAYLIS GC, 1987, J NEUROSCI, V7, P330
[3]  
BODAMER J, 1947, Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr, V118, P6, DOI 10.1007/BF00352849
[4]   View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex [J].
Booth, MCA ;
Rolls, ET .
CEREBRAL CORTEX, 1998, 8 (06) :510-523
[5]  
Bornstein B, 1969, Cortex, V5, P164
[6]   VISUAL TOPOGRAPHY OF AREA TEO IN THE MACAQUE [J].
BOUSSAOUD, D ;
DESIMONE, R ;
UNGERLEIDER, LG .
JOURNAL OF COMPARATIVE NEUROLOGY, 1991, 306 (04) :554-575
[7]   FACE RECOGNITION BY MONKEYS - ABSENCE OF AN INVERSION EFFECT [J].
BRUCE, C .
NEUROPSYCHOLOGIA, 1982, 20 (05) :515-521
[8]  
BRUYER R, 1992, B PSYCHONOMIC SOC, V30, P501
[9]  
BUELTHOFF HH, 1992, P NATL ACAD SCI USA, V89, P60
[10]   Functional magnetic resonance imaging of human visual cortex during face matching: A comparison with positron emission tomography [J].
Clark, VP ;
Keil, K ;
Maisog, JM ;
Courtney, S ;
Ungerleider, LG ;
Haxby, JV .
NEUROIMAGE, 1996, 4 (01) :1-15