The Majority of the Type III Effector Inventory of Pseudomonas syringae pv. tomato DC3000 Can Suppress Plant Immunity

被引:203
作者
Guo, Ming [1 ,2 ]
Tian, Fang [1 ,3 ]
Wamboldt, Yashitola [1 ]
Alfano, James R. [1 ,2 ]
机构
[1] Univ Nebraska, Ctr Plant Sci Innovat, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Plant Pathol, Lincoln, NE 68588 USA
[3] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PROTEIN SECRETION SYSTEM; PROGRAMMED CELL-DEATH; DISEASE RESISTANCE GENES; GRAM-NEGATIVE BACTERIA; INNATE IMMUNITY; ARABIDOPSIS-THALIANA; HYPERSENSITIVE RESPONSE; TYROSINE-PHOSPHATASE; SALMONELLA-TYPHIMURIUM; ESCHERICHIA-COLI;
D O I
10.1094/MPMI-22-9-1069
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ETI and pathogen-associated molecular pattern-triggered immunity (PTI), which is induced by conserved molecules on microorganisms. We reported that seven type III effectors from P. syringae pv. tomato DC3000 were capable of suppressing an HR induced by P. fluorescens(pHIR11) and have now tested 35 DC3000 type III effectors in this assay, finding that the majority of them can suppress the HR induced by HopA1. One newly identified type III effector with particularly strong HR suppression activity was HopS2. We used the pHIR11 derivative pLN1965, which lacks hopA1, in related assays and found that a subset of the type III effectors that suppressed HopA1-induced ETI also suppressed an ETI response induced by AvrRpm1 in Arabidopsis thaliana. A. thaliana plants expressing either HopAO1 or HopF2, two type III effectors that suppressed the HopA1-induced HR, were reduced in the flagellin-induced PTI response as well as PTI induced by other PAMPs and allowed enhanced in planta growth of P. syringae. Collectively, our results suggest that the majority of DC3000 type III effectors can suppress plant immunity. Additionally, the construct pLN1965 will likely be a useful tool in determining whether other type III effectors or effectors from other types of pathogens can suppress either ETI, PTI, or both.
引用
收藏
页码:1069 / 1080
页数:12
相关论文
共 57 条
[1]   AvrPtoB: A bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity [J].
Abramovitch, RB ;
Martin, GB .
FEMS MICROBIOLOGY LETTERS, 2005, 245 (01) :1-8
[2]   Bacterial elicitation and evasion of plant innate immunity [J].
Abramovitch, Robert B. ;
Anderson, Jeffrey C. ;
Martin, Gregory B. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (08) :601-611
[3]   Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana [J].
Adam, L ;
Somerville, SC .
PLANT JOURNAL, 1996, 9 (03) :341-356
[4]   The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants [J].
Alfano, JR ;
Charkowski, AO ;
Deng, WL ;
Badel, JL ;
Petnicki-Ocwieja, T ;
van Dijk, K ;
Collmer, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4856-4861
[5]   Evidence that the Pseudomonas syringae pv syringae hrp-linked hrmA gene encodes an Avr-like protein that acts in an hrp-dependent manner within tobacco cells [J].
Alfano, JR ;
Kim, HS ;
Delaney, TP ;
Collmer, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1997, 10 (05) :580-588
[6]   Analysis of the role of the Pseudomonas syringae pv syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations [J].
Alfano, JR ;
Bauer, DW ;
Milos, TM ;
Collmer, A .
MOLECULAR MICROBIOLOGY, 1996, 19 (04) :715-728
[7]   The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death [J].
Alfano, JR ;
Collmer, A .
JOURNAL OF BACTERIOLOGY, 1997, 179 (18) :5655-5662
[8]   Are innate immune signaling pathways in plants and animals conserved? [J].
Ausubel, FM .
NATURE IMMUNOLOGY, 2005, 6 (10) :973-979
[9]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[10]   A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection [J].
Bretz, JR ;
Mock, NM ;
Charity, JC ;
Zeyad, S ;
Baker, CJ ;
Hutcheson, SW .
MOLECULAR MICROBIOLOGY, 2003, 49 (02) :389-400