Analytical potential of the quadruplex DNA-based FRET probes

被引:54
作者
Juskowiak, Bernard [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Chem, Dept Analyt Chem, PL-60780 Poznan, Poland
关键词
fluorescence; FRET; G-quadruplex; potassium ion; proteins; quadruplex-binding ligands; telomeric DNA; tetraplex DNA; thrombin aptamer;
D O I
10.1016/j.aca.2005.12.063
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
DNA exhibits structural flexibility and may adopt also tetraplex structures known as guanine-quadruplexes or G-quadruplexes. These G-quadruplexes have recently received great attention because G-rich sequences are often found in genome and because of their potential links to mechanisms that relate to cancer, IUV, and other diseases. The unique structure of quadruplexes has also stimulated development of new analytical and bioanalytical assays based on fluorescence resonance energy transfer (FRET). Intramolecular folding of a flexible single-stranded DNA molecule into a compact G-quadruplex is a structural transition leading to closer proximity of its 5'- and 3'-ends. Thus, labeling both ends of a DNA strand with donor and acceptor fluorophores enables monitoring the quadruplex formation process by means of the FRET signal. This review shows how FRET technique contributes to G-quadruplex research and focuses mainly on analytical applications of FRET-labeled quadruplexes. Applications include studies of structural transitions of quadruplexes, FRET-based selection of ligands that bind to quadruplexes, design of molecular probes for protein recognition and development of sensors for detection of potassium ions in aqueous solution. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 180
页数:10
相关论文
共 82 条
[1]   Interaction of an acridine dimer with DNA quadruplex structures [J].
Alberti, P ;
Ren, JS ;
Teulade-Fichou, MP ;
Guittat, L ;
Riou, JF ;
Chaires, JB ;
Hélène, C ;
Vigneron, JP ;
Lehn, JM ;
Mergny, JL .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2001, 19 (03) :505-513
[2]   DNA duplex-quadruplex exchange as the basis for a nanomolecular machine [J].
Alberti, P ;
Mergny, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (04) :1569-1573
[3]   SELECTION OF SINGLE-STRANDED-DNA MOLECULES THAT BIND AND INHIBIT HUMAN THROMBIN [J].
BOCK, LC ;
GRIFFIN, LC ;
LATHAM, JA ;
VERMAAS, EH ;
TOOLE, JJ .
NATURE, 1992, 355 (6360) :564-566
[4]   DETECTION OF NUCLEIC-ACID HYBRIDIZATION BY NONRADIATIVE FLUORESCENCE RESONANCE ENERGY-TRANSFER [J].
CARDULLO, RA ;
AGRAWAL, S ;
FLORES, C ;
ZAMECNIK, PC ;
WOLF, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (23) :8790-8794
[5]  
CASTASI P, 1996, J MOL BIOL, V264, P534
[6]   Supramolecular self-assembly of d(TGG)(4), synergistic effects of K+ and Mg2+ [J].
Chen, FM .
BIOPHYSICAL JOURNAL, 1997, 73 (01) :348-356
[7]   OBSERVING THE HELICAL GEOMETRY OF DOUBLE-STRANDED DNA IN SOLUTION BY FLUORESCENCE RESONANCE ENERGY-TRANSFER [J].
CLEGG, RM ;
MURCHIE, AIH ;
ZECHEL, A ;
LILLEY, DMJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (07) :2994-2998
[8]  
CLEGG RM, 1992, METHOD ENZYMOL, V211, P353
[9]   FLUORESCENCE RESONANCE ENERGY-TRANSFER ANALYSIS OF THE STRUCTURE OF THE 4-WAY DNA JUNCTION [J].
CLEGG, RM ;
MURCHIE, AIH ;
ZECHEL, A ;
CARLBERG, C ;
DIEKMANN, S ;
LILLEY, DMJ .
BIOCHEMISTRY, 1992, 31 (20) :4846-4856
[10]   Biophysical and biological properties of quadruplex oligodeoxyribonucleotides [J].
Dapic, V ;
Abdomerovic, V ;
Marrington, R ;
Peberdy, J ;
Rodger, A ;
Trent, JO ;
Bates, PJ .
NUCLEIC ACIDS RESEARCH, 2003, 31 (08) :2097-2107