Software measurement: Uncertainty and causal modeling

被引:94
作者
Fenton, N
Krause, P
Neil, M
机构
[1] Univ London Queen Mary Coll, Dept Comp Sci, London E1 4NS, England
[2] Philips Res Labs, Redhill RH1 5HA, Surrey, England
关键词
Bayesian networks - Graphical model - Predictive models - Software measurement;
D O I
10.1109/MS.2002.1020298
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Software measurement can play an important risk management role during product development. For example, metrics incorporated into predictive models can give advance warning of potential risks. The authors show how to use Bayesian networks, a graphical modeling technique, to predict software defects and perform "what if" scenarios.
引用
收藏
页码:116 / +
页数:8
相关论文
共 8 条
[1]   OPTIMIZING PREVENTIVE SERVICE OF SOFTWARE PRODUCTS [J].
ADAMS, EN .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1984, 28 (01) :2-14
[2]  
Fenton N, 2014, Software Metrics: A Rigorous and Practical Approach, DOI 10.1201/b17461
[3]   Quantitative analysis of faults and failures in a complex software system [J].
Fenton, NE ;
Ohlsson, N .
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2000, 26 (08) :797-814
[4]   A critique of software defect prediction models [J].
Fenton, NE ;
Neil, M .
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1999, 25 (05) :675-689
[5]  
FENTON NE, UNPUB IEEE T SOFTWAR
[6]  
LAURITZEN SL, 1988, J ROY STAT SOC B MET, V50, P157
[7]   Building large-scale Bayesian networks [J].
Neil, M ;
Fenton, N ;
Nielsen, L .
KNOWLEDGE ENGINEERING REVIEW, 2000, 15 (03) :257-284
[8]  
Pearl P, 1988, PROBABILISTIC REASON, DOI DOI 10.1016/C2009-0-27609-4