A role of the C-terminal region of human Rad9 (hRad9) in nuclear transport of the hRad9 checkpoint complex

被引:52
作者
Hirai, I
Wang, HG
机构
[1] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Drug Discovery Program, Tampa, FL 33612 USA
[2] Univ S Florida, Coll Med, Dept Interdisciplinary Oncol, Tampa, FL 33612 USA
[3] Univ S Florida, Coll Med, Dept Pharmacol & Therapeut, Tampa, FL 33612 USA
关键词
D O I
10.1074/jbc.M203079200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rad9, Rad1, and Hus1 are members of the Rad family of checkpoint proteins that are required for both DNA replication and DNA damage checkpoints and are thought to function as sensors in the DNA integrity checkpoint control. These proteins can interact with each other and form a stable proliferating cell nuclear antigen-related Rad9-Rad1-Hus1 heterotrimeric complex that might encircle DNA at or near the damaged sites. In this study, we demonstrate that the human Rad9 (hRad9) protein contains a predicted nuclear localization sequence (NLS) near its C terminus, which plays an essential role in the hRad9-mediated G2 checkpoint. Deletion experiments indicate that the NLS-containing region of hRad9 is critical for the nuclear transport of not only hRad9 but also human Rad1 (hRad1) and human Hus1 (hHus1), although this region is not required for hRad9-hRad1-hHus1 complex formation. In support of the role that hRad9 NI'S plays in the nuclear targeting of the hRad9-hRad1-hHus1 complex, overexpression of a deletion mutant of hRad9 lacking the NLS-containing C-terminal region can bypass the G(2) checkpoint and result in cell death after ionizing radiation or hydroxyurea treatment. Moreover, knockdown of hRad9 expression by small interfering RNA (siRNA) results in hRad1 accumulation in the cytoplasm and significantly abrogates the G, checkpoint in the presence of damaged DNA or incomplete DNA replication. Thus, the C-terminal region of human Rad9 protein is important for G(2) checkpoint control by operating the transport of the hRad9-hRad1-hHus1 checkpoint complex into the nucleus.
引用
收藏
页码:25722 / 25727
页数:6
相关论文
共 40 条
[1]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[2]   Conserved domains in DNA repair proteins and evolution of repair systems [J].
Aravind, L ;
Walker, DR ;
Koonin, EV .
NUCLEIC ACIDS RESEARCH, 1999, 27 (05) :1223-1242
[3]   ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses [J].
Bao, SD ;
Tibbetts, RS ;
Brumbaugh, KM ;
Fang, YN ;
Richardson, DA ;
Ali, A ;
Chen, SM ;
Abraham, RT ;
Wang, XF .
NATURE, 2001, 411 (6840) :969-974
[4]   DNA replication checkpoint [J].
Boddy, MN ;
Russell, P .
CURRENT BIOLOGY, 2001, 11 (23) :R953-R956
[5]   Retention of the human Rad9 checkpoint complex in extraction-resistant nuclear complexes after DNA damage [J].
Burtelow, MA ;
Kaufmann, SH ;
Karnitz, LM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26343-26348
[6]   Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex [J].
Burtelow, MA ;
Roos-Mattjus, PMK ;
Rauen, M ;
Babendure, JR ;
Karnitz, LM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (28) :25903-25909
[7]  
Cai RL, 2000, J BIOL CHEM, V275, P27909
[8]   Characterization of Schizosaccharomyces pombe Hus1:: a PCNA-related protein that associates with Rad1 and Rad9 [J].
Caspari, T ;
Dahlen, M ;
Kanter-Smoler, G ;
Lindsay, HD ;
Hofmann, K ;
Papadimitriou, K ;
Sunnerhagen, P ;
Carr, AM .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (04) :1254-1262
[9]   cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein [J].
Cimprich, KA ;
Shin, TB ;
Keith, CT ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (07) :2850-2855
[10]   ATR and ATRIP: Partners in checkpoint signaling [J].
Cortez, D ;
Guntuku, S ;
Qin, J ;
Elledge, SJ .
SCIENCE, 2001, 294 (5547) :1713-1716