Nanoscale materials for lithium-ion batteries

被引:117
作者
Sides, CR [1 ]
Li, NC
Patrissi, CJ
Scrosati, B
Martin, CR
机构
[1] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
[2] USN, Undersea Warfare Ctr, Newport, RI USA
[3] Univ Rome, Rome, Italy
[4] Univ Florida, Ctr Res Bio Nano Interface, Gainesville, FL 32611 USA
关键词
energy storage; nanofibers; rechargeable lithium batteries; template synthesis;
D O I
10.1557/mrs2002.195
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Template synthesis is a versatile nanomaterial fabrication method used to make monodisperse nanoparticles of a variety of materials including metals, semiconductors, carbons, and polymers. We have used the template method to prepare nanostructured lithium-ion battery electrodes in which nanofibers or nanotubes of the electrode material protrude from an underlying current-collector surface like the bristles of a brush. Nanostructured electrodes of this type composed of carbon, LiMn2O4, V2O5, tin, TiO2, and TiS2 have been prepared. In all cases, the nanostructured electrode showed dramatically improved rate capabilities relative to thin-film control electrodes composed of the same material. The rate capabilities are improved because the distance that Li+ must diffuse in the solid state (the current- and power-limiting step in Li-ion battery electrodes) is significantly smaller in the nanostructured electrode. For example, in a nanofiber-based electrode, the distance that Li must diffuse is restricted to the radius of the fiber, which may be as small as 50 nm. Recent developments in template-prepared nanostructured electrodes are reviewed.
引用
收藏
页码:604 / 607
页数:4
相关论文
共 49 条
[1]   Reaction of Li with grain-boundary atoms in nanostructured compounds [J].
Beaulieu, LY ;
Larcher, D ;
Dunlap, RA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (09) :3206-3212
[2]   Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J].
Besenhard, JO ;
Yang, J ;
Winter, M .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :87-90
[3]   Thin-film crystalline SnO2-lithium electrodes [J].
Brousse, T ;
Retoux, R ;
Herterich, U ;
Schleich, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :1-4
[4]  
Bruce PG, 1997, CHEM COMMUN, P1817
[5]   Fabrication and characterization of concentric-tubular composite micro- and nanostructures using the template-synthesis method [J].
Cepak, VM ;
Hulteen, JC ;
Che, GL ;
Jirage, KB ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
JOURNAL OF MATERIALS RESEARCH, 1998, 13 (11) :3070-3080
[6]   Chemical-vapor deposition-based template synthesis of microtubular TiS2 battery electrodes [J].
Che, G ;
Jirage, KB ;
Fisher, ER ;
Martin, CR ;
Yoneyama, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4296-4302
[7]   Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method [J].
Che, G ;
Lakshmi, BB ;
Martin, CR ;
Fisher, ER ;
Ruoff, RS .
CHEMISTRY OF MATERIALS, 1998, 10 (01) :260-267
[8]   Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Martin, CR ;
Fisher, ER .
LANGMUIR, 1999, 15 (03) :750-758
[9]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[10]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052