Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase

被引:164
作者
Carretero-Paulet, Lorenzo
Cairo, Albert
Botella-Pavia, Patricia
Besumbes, Oscar
Campos, Narciso
Boronat, Albert
Rodriguez-Concepcion, Manuel
机构
[1] Univ Barcelona, Fac Biol, Dept Bioquim & Biol Mol, E-08028 Barcelona, Spain
[2] CSIC, IRTA, Lab Genet Mol & Vegetal, ES-08034 Barcelona, Spain
基金
英国医学研究理事会;
关键词
Arabidopsis; carotenoids; deoxyxylulose 5-phosphate reductoisomerase (DXR); isoprenoid biosynthesis; methylerythritol 4-phosphate (MEP) pathway; taxadiene;
D O I
10.1007/s11103-006-9051-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP-derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.
引用
收藏
页码:683 / 695
页数:13
相关论文
共 52 条
[1]   Temperature-sensitive Arabidopsis mutant defective in 1-deoxy-D-xylulose 5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid biosynthesis [J].
Araki, N ;
Kusumi, K ;
Masamoto, K ;
Niwa, Y ;
Iba, K .
PHYSIOLOGIA PLANTARUM, 2000, 108 (01) :19-24
[2]   Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis [J].
Bede, JC ;
Musser, RO ;
Felton, GW ;
Korth, KL .
PLANT MOLECULAR BIOLOGY, 2006, 60 (04) :519-531
[3]   Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol [J].
Besumbes, O ;
Sauret-Güeto, S ;
Phillips, MA ;
Imperial, S ;
Rodríguez-Concepción, M ;
Boronat, A .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 88 (02) :168-175
[4]   Regulation of carotenoid biosynthesis in plants:: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors [J].
Botella-Pavía, P ;
Besumbes, O ;
Phillips, MA ;
Carretero-Paulet, L ;
Boronat, A ;
Rodríguez-Concepción, M .
PLANT JOURNAL, 2004, 40 (02) :188-199
[5]   Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits [J].
Bouvier, F ;
d'Harlingue, A ;
Suire, C ;
Backhaus, RA ;
Camara, B .
PLANT PHYSIOLOGY, 1998, 117 (04) :1423-1431
[6]  
Budziszewski GJ, 2001, GENETICS, V159, P1765
[7]   Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites [J].
Burlat, V ;
Oudin, A ;
Courtois, M ;
Rideau, M ;
St-Pierre, B .
PLANT JOURNAL, 2004, 38 (01) :131-141
[8]   Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway [J].
Carretero-Paulet, L ;
Ahumada, I ;
Cunillera, N ;
Rodríguez-Concepción, M ;
Ferrer, A ;
Boronat, A ;
Campos, N .
PLANT PHYSIOLOGY, 2002, 129 (04) :1581-1591
[9]  
CHADED K, 2000, PLANT PHYSIOL BIOCH, V38, P559
[10]   IS THE REACTION CATALYZED BY 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE A RATE-LIMITING STEP FOR ISOPRENOID BIOSYNTHESIS IN PLANTS [J].
CHAPPELL, J ;
WOLF, F ;
PROULX, J ;
CUELLAR, R ;
SAUNDERS, C .
PLANT PHYSIOLOGY, 1995, 109 (04) :1337-1343