Simultaneous expression and maturation of the iron-sulfur protein ferredoxin in a cell-free system

被引:16
作者
Boyer, ME [1 ]
Wang, CW [1 ]
Swartz, JR [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
关键词
cell-free protein synthesis; ferredoxin; iron-sulfur proteins; iron-sulfur protein maturation; Escherichia coli; ISC proteins;
D O I
10.1002/bit.20830
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The model iron-sulfur (Fe-S) protein ferredoxin (Fd) from Synechocystis sp. PCC 6803 has been simultaneously produced and matured in a cell-free production system. After 6 h of incubation at 37 degrees C, Fd accumulated to > 450 mu g/mL. Essentially all was soluble, and 85% was active. Production and maturation of the protein in the cell-free system were found to be dependent in a coupled manner on the concentration of the supplemented iron and sulfur sources, ferrous ammonium sulfate and cysteine, respectively. The recombinant expression of ISC helper proteins during cell extract preparation did not increase cell-free Fd accumulation or activity, although the efficiency of iron and cysteine utilization increased. Fd maturation was independent of protein production rate, and proceeded at a constant rate throughout the period of active translation. In addition, incubation of denatured apo Fd with cell-free reaction components resulted in recovery of Fd activity, supporting the interpretation that maturation mechanisms did not act co-translationally. Incubation at 28 degrees C increased total and active protein accumulation, but decreased the ratio of active to total Fd produced. In summary, the high product yields and folding efficiency make the cell-free system described here an attractive platform for the study of Fe-S protein production and maturation. The system enables both small-volume, high throughput investigations as well as larger scale production. To our knowledge, this is the first demonstration of directed, high-yield production and maturation of an Fe-S protein in a cell-free system. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:128 / 138
页数:11
相关论文
共 49 条
[1]   IscU as a scaffold for iron-sulfur cluster biosynthesis: Sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU [J].
Agar, JN ;
Krebs, C ;
Frazzon, J ;
Huynh, BH ;
Dean, DR ;
Johnson, MK .
BIOCHEMISTRY, 2000, 39 (27) :7856-7862
[2]   THE NIFEN GENES PARTICIPATING IN FEMO COFACTOR BIOSYNTHESIS AND GENES ENCODING DINITROGENASE ARE PART OF THE SAME OPERON IN BRADYRHIZOBIUM SPECIES [J].
AGUILAR, OM ;
TAORMINO, J ;
THONY, B ;
RAMSEIER, T ;
HENNECKE, H ;
SZALAY, AA .
MOLECULAR & GENERAL GENETICS, 1990, 224 (03) :413-420
[3]   Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942 [J].
Asada, Y ;
Koike, Y ;
Schnackenberg, J ;
Miyake, M ;
Uemura, I ;
Miyake, J .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2000, 1490 (03) :269-278
[4]   Iron-sulfur clusters: Nature's modular, multipurpose structures [J].
Beinert, H ;
Holm, RH ;
Munck, E .
SCIENCE, 1997, 277 (5326) :653-659
[5]   FERREDOXIN AND FLAVODOXIN FROM THE CYANOBACTERIUM SYNECHOCYSTIS SP PCC-6803 [J].
BOTTIN, H ;
LAGOUTTE, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1101 (01) :48-56
[6]  
BRANDT U, 1993, J BIOL CHEM, V268, P8387
[7]   Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein [J].
Ding, HG ;
Clark, RJ .
BIOCHEMICAL JOURNAL, 2004, 379 :433-440
[9]   NIFU GENE-PRODUCT FROM AZOTOBACTER-VINELANDII IS A HOMODIMER THAT CONTAINS 2 IDENTICAL [2FE-2S] CLUSTERS [J].
FU, WG ;
JACK, RF ;
MORGAN, TV ;
DEAN, DR ;
JOHNSON, MK .
BIOCHEMISTRY, 1994, 33 (45) :13455-13463
[10]   The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters [J].
Goodwin, PJ ;
Agar, JN ;
Roll, JT ;
Roberts, GP ;
Johnson, MK ;
Dean, DR .
BIOCHEMISTRY, 1998, 37 (29) :10420-10428