Hyperpolarization-activated current (I-h) in primary auditory neurons

被引:55
作者
Chen, C
机构
[1] Kresge Hear. Res. Lab. of the South, Dept. Otorhinolaryngology B., New Orleans
关键词
hyperpolarization-activated current; inward rectifying channel; voltage-clamp; current-clamp; primary auditory nerve; spiral ganglion neuron;
D O I
10.1016/S0378-5955(97)00078-6
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
A hyperpolarization-activated current (termed I-h) is believed to provide a pacemaker depolarization in sinoatrial node cells and in some central and peripheral neurons. In the present study, we examined if such an inward cation current exists in primary auditory neurons using the whole-cell patch-clamp technique. A large inward, non-inactivating current was seen during hyperpolarizing steps negative to the resting potential. A depolarizing sag occurred during hyperpolarizing current injection, and upon termination of the current injection there was an overshoot, or a rebound firing. A low concentration of Cs+, but not Ba2+, reversibly blocked the inward current and depolarizing sag. The activation of the current showed voltage dependence with half-activation occurring at -101 +/- 1 mV. The time course of a activation was fitted by double exponential function and was voltage-dependent (time constants: tau(1) and tau(2) = 480 and 3125 ms at -100 mV, and 66 and 404 ms at -160 mV). The reversal potential of the current was -36 mV measured from tail currents. The conductance of the current was decreased in Na+-free solution, and increased in high K+ solution. Increases in the levels of intracellular cAMP or cGMP enhanced the current. The results suggest that there exists a hyperpolarization-activated inward cation current in mammalian primary auditory neurons. This current may provide a depolarizing current during the membrane hyperpolarization following each firing of the primary auditory nerve.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 59 条
[1]   M-CURRENTS AND OTHER POTASSIUM CURRENTS IN BULLFROG SYMPATHETIC NEURONS [J].
ADAMS, PR ;
BROWN, DA ;
CONSTANTI, A .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 330 (SEP) :537-572
[2]  
ADAMS PR, 1982, J PHYSIOL-LONDON, V332, P233
[3]   CAMP-DEPENDENT INWARD RECTIFIER CURRENT IN NEURONS OF THE RAT SUPRACHIASMATIC NUCLEUS [J].
AKASU, T ;
SHOJI, S .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1994, 429 (01) :117-125
[4]   D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors [J].
Akopian, A ;
Witkovsky, P .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (03) :1828-1835
[5]  
ANGSTADT JD, 1989, J NEUROSCI, V9, P2846
[6]   BEHAVIOR OF THE ROD NETWORK IN THE TIGER SALAMANDER RETINA MEDIATED BY MEMBRANE-PROPERTIES OF INDIVIDUAL RODS [J].
ATTWELL, D ;
WILSON, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1980, 309 (DEC) :287-315
[7]   EFFECT OF CHANGES IN INTRACELLULAR AND EXTRACELLULAR-SODIUM ON THE INWARD (ANOMALOUS) RECTIFICATION IN SALAMANDER PHOTORECEPTORS [J].
BADER, CR ;
BERTRAND, D .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 347 (FEB) :611-631
[8]   MECHANISMS OF OSCILLATORY ACTIVITY IN GUINEA-PIG NUCLEUS-RETICULARIS THALAMI IN-VITRO - A MAMMALIAN PACEMAKER [J].
BAL, T ;
MCCORMICK, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 468 :669-691
[9]   HYPERPOLARIZATION-ACTIVATED CATION CURRENT (I(H)) IN NEURONS OF THE MEDIAL NUCLEUS OF THE TRAPEZOID BODY - VOLTAGE-CLAMP ANALYSIS AND ENHANCEMENT BY NOREPINEPHRINE AND CAMP SUGGEST A MODULATORY MECHANISM IN THE AUDITORY BRAIN-STEM [J].
BANKS, MI ;
PEARCE, RA ;
SMITH, PH .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 70 (04) :1420-1432
[10]  
BOBBIN RP, 1979, EXP BRAIN RES, V34, P389