Electrolytic CO2 Reduction in a Flow Cell

被引:880
作者
Weekes, David M. [1 ]
Salvatore, Danielle A. [2 ]
Reyes, Angelica [2 ]
Huang, Aoxue [1 ]
Berlinguette, Curtis P. [1 ,2 ,3 ]
机构
[1] Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z3, Canada
[2] Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6H 1Z3, Canada
[3] Univ British Columbia, Stewart Blusson Quantum Matter Inst, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CARBON-DIOXIDE REDUCTION; PEM FUEL-CELLS; ELECTROCHEMICAL REDUCTION; BIPOLAR MEMBRANES; WATER OXIDATION; CONVERSION; ELECTROREDUCTION; PERFORMANCE; CATALYST; SYNGAS;
D O I
10.1021/acs.accounts.8b00010
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic CO2 conversion at near ambient temperatures and pressures offers a potential means of converting waste greenhouse gases into fuels or commodity chemicals (e.g., CO, formic acid, methanol, ethylene, alkanes, and alcohols). This process is particularly compelling when driven by excess renewable electricity because the consequent production of solar fuels would lead to a closing of the carbon cycle. However, such a technology is not currently commercially available. While CO2 electrolysis in H-cells is widely used for screening electrocatalysts, these experiments generally do not effectively report on how CO2 electrocatalysts behave in flow reactors that are more relevant to a scalable CO2 electrolyzer system. Flow reactors also offer more control over reagent delivery, which includes enabling the use of a gaseous CO2 feed to the cathode of the cell. This setup provides a platform for generating much higher current densities (& IT;J & IT;) by reducing the mass transport issues inherent to the H-cells.& para;& para;In this Account, we examine some of the systems-level strategies that have been applied in an effort to tailor flow reactor components to improve electrocatalytic reduction. Flow reactors that have been utilized in CO2 electrolysis schemes can be categorized into two primary architectures: Membrane-based flow cells and microfluidic reactors. Each invoke different dynamic mechanisms for the delivery of gaseous CO2 to electrocatalytic sites, and both have been demonstrated to achieve high current densities (J > 200 mA cm(-2)) for CO2 reduction. One strategy common to both reactor architectures for improving J is the delivery of CO2 to the cathode in the gas phase rather than dissolved in a liquid electrolyte. This physical facet also presents a number of challenges that go beyond the nature of the electrocatalyst, and we scrutinize how the judicious selection and modification of certain components in microfluidic and/or membrane-based reactors can have a profound effect on electrocatalytic performance. In membrane-based flow cells, for example, the choice of either a cation exchange membrane (CEM), anion exchange membrane (AEM), or a bipolar membrane (BPM) affects the kinetics of ion transport pathways and the range of applicable electrolyte conditions. In microfluidic cells, extensive studies have been performed upon the properties of porous carbon gas diffusion layers, materials that are equally relevant to membrane reactors. A theme that is pervasive throughout our analyses is the challenges associated with precise and controlled water management in gas phase CO2 electrolyzers, and we highlight studies that demonstrate the importance of maintaining adequate flow cell hydration to achieve sustained electrolysis.
引用
收藏
页码:910 / 918
页数:9
相关论文
共 70 条
[1]   Electrochemical conversion of CO2 to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte [J].
Aeshala, Leela Manohar ;
Uppaluri, Ramagopal ;
Verma, Anil .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (33) :17588-17594
[2]  
Ang P. G. P., 1980, US Patent, Patent No. [4,240,882, 4240882]
[3]   The hydrogen economy - Vision or reality? [J].
Ball, Michael ;
Weeda, Marcel .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (25) :7903-7919
[4]   A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control [J].
Chauhan, Anurag ;
Saini, R. P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 38 :99-120
[5]   AMBIENT-TEMPERATURE GAS-PHASE CO2 REDUCTION TO HYDROCARBONS AT SOLID POLYMER ELECTROLYTE CELLS [J].
COOK, RL ;
MACDUFF, RC ;
SAMMELLS, AF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (06) :1470-1471
[6]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[7]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436
[8]   Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature [J].
Delacourt, Charles ;
Ridgway, Paul L. ;
Kerr, John B. ;
Newman, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) :B42-B49
[9]  
Ebbesen S. D, 2008, ADV SOLID OXIDE FUEL, V29, P272
[10]   Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells [J].
Ebbesen, Sune Dalgaard ;
Mogensen, Mogens .
JOURNAL OF POWER SOURCES, 2009, 193 (01) :349-358