Annealing kinetics of electrodeposited lithium dendrites

被引:50
作者
Aryanfar, Asghar [1 ]
Cheng, Tao [2 ]
Colussi, Agustin J. [1 ]
Merinov, Boris V. [2 ]
Goddard, William A., III [2 ]
Hoffmann, Michael R. [1 ]
机构
[1] CALTECH, Linde Ctr Global Environm Sci, Pasadena, CA 91125 USA
[2] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
关键词
REACTIVE FORCE-FIELD; ELASTIC BAND METHOD; LIQUID ELECTROLYTES; GROWTH; METAL; DYNAMICS; ENERGY; MECHANISMS; MICROSCOPY; REAXFF;
D O I
10.1063/1.4930014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The densifying kinetics of lithium dendrites is characterized with effective activation energy of E-a approximate to 6 - 7 kcal mol(-1) in our experiments and molecular dynamics computations. We show that heating lithium dendrites for 55 degrees C reduces the representative dendrites length (lambda) over bar (T, t) up to 36%. NVT reactive force field simulations on three-dimensional glass phase dendrites produced by our coarse grained Monte Carlo method reveal that for any given initial dendrite morphology, there is a unique stable atomic arrangement for a certain range of temperature, combined with rapid morphological transition (similar to 10 ps) within quasi-stable states involving concurrent bulk and surface diffusions. Our results are useful for predicting the inherent structural characteristics of lithium dendrites such as dominant coordination number. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 40 条
[1]   Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2014, 246 :84-89
[2]  
[Anonymous], 1980, ELECTROCHEMICAL METH
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]  
Aryanfar A., 2014, US Pat.,, Patent No. [14/201,979, 14201979]
[5]   Thermal relaxation of lithium dendrites [J].
Aryanfar, Asghar ;
Brooks, Daniel J. ;
Colussi, Agustin J. ;
Merinov, Boris V. ;
Goddard, William A., III ;
Hoffmann, Michael R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) :8000-8005
[6]   Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries [J].
Aryanfar, Asghar ;
Brooks, Daniel J. ;
Colussi, Agustin J. ;
Hoffmann, Michael R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (45) :24965-24970
[7]   Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations [J].
Aryanfar, Asghar ;
Brooks, Daniel ;
Merinov, Boris V. ;
Goddard, William A., III ;
Colussi, Agustin J. ;
Hoffmann, Michael R. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (10) :1721-1726
[8]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[9]   In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (12) :4393-4400
[10]   Concentration measurements in lithium/polymer-electrolyte/lithium cells during cycling [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 2001, 94 (02) :212-218