A finite element method for interface problems in domains with smooth boundaries and interfaces

被引:251
作者
Bramble, JH
King, JT
机构
[1] TEXAS A&M UNIV,DEPT MATH,COLLEGE STN,TX 77843
[2] UNIV CINCINNATI,DEPT MATH SCI,CINCINNATI,OH 45221
关键词
finite element method; interface problems;
D O I
10.1007/BF02127700
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the analysis of a finite element method for nonhomogeneous second order elliptic interface problems on smooth domains. The method consists in approximating the domains by polygonal domains, transferring the boundary data in a natural way, and then applying a finite element method to the perturbed problem on the approximate polygonal domains. It is shown that the error in the finite element approximation is of optimal order for linear elements on a quasiuniform triangulation. As such the method is robust in the regularity of the data in the original problem.
引用
收藏
页码:109 / 138
页数:30
相关论文
共 21 条
[1]   FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
BABUSKA, I .
COMPUTING, 1970, 5 (03) :207-&
[2]  
BAKER GA, 1973, THESIS CORNELL U
[3]   FITTED AND UNFITTED FINITE-ELEMENT METHODS FOR ELLIPTIC-EQUATIONS WITH SMOOTH INTERFACES [J].
BARRETT, JW ;
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (03) :283-300
[4]   A BOUNDARY PARAMETRIC APPROXIMATION TO THE LINEARIZED SCALAR POTENTIAL MAGNETOSTATIC FIELD PROBLEM [J].
BRAMBLE, JH ;
PASCIAK, JE .
APPLIED NUMERICAL MATHEMATICS, 1985, 1 (06) :493-514
[5]   SOME ESTIMATES FOR A WEIGHTED L2 PROJECTION [J].
BRAMBLE, JH ;
XU, JC .
MATHEMATICS OF COMPUTATION, 1991, 56 (194) :463-476
[6]  
BRAMBLE JH, 1994, MATH COMPUT, V63, P1, DOI 10.1090/S0025-5718-1994-1242055-6
[7]   PROJECTION METHODS FOR DIRICHLETS PROBLEM IN APPROXIMATING POLYGONAL DOMAINS WITH BOUNDARY-VALUE CORRECTIONS [J].
BRAMBLE, JH ;
DUPONT, T ;
THOMEE, V .
MATHEMATICS OF COMPUTATION, 1972, 26 (120) :869-879
[8]  
Butzer P.L., 1967, Die Grundlehren der Mathematischen Wissenschaften, V145
[9]  
Ciarlet P. G., 1972, MATH FDN FINITE ELEM, P409
[10]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0