β-synuclein regulates Akt activity in neuronal cells -: A possible mechanism for neuroprotection in Parkinson's disease

被引:90
作者
Hashimoto, M
Bar-on, P
Ho, G
Takenouchi, T
Rockenstein, E
Crews, L
Masliah, E [1 ]
机构
[1] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pathol, La Jolla, CA 92093 USA
[3] Natl Inst Agrobiol Sci, Lab Anim Cell Biol, Tsukuba, Ibaraki 3050602, Japan
关键词
D O I
10.1074/jbc.M313784200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies have shown that the neurodegenerative process in disorders with Lewy body formation, such as Parkinson's disease and dementia with Lewy bodies, is associated with alpha-synuclein accumulation and that beta-synuclein might protect the central nervous system from the neurotoxic effects of alpha-synuclein. However, the mechanisms are unclear. The main objective of the present study was to investigate the potential involvement of the serine threonine kinase Akt ( also known as protein kinase B) signaling pathway in the mechanisms of beta-synuclein neuroprotection. For this purpose, Akt activity and cell survival were analyzed in synuclein-transfected B103 neuroblastoma cells and primary cortical neurons. beta-Synuclein transfection resulted in increased Akt activity and conferred protection from the neurotoxic effects of rotenone. Down-regulation of Akt expression resulted in an increased susceptibility to rotenone toxicity, whereas transfection with a lentiviral vector encoding for beta-synuclein was protective. The effects of beta-synuclein on the Akt pathway appear to be by direct interaction between these molecules and were independent of upstream signaling molecules. Taken together, these results indicate that the mechanisms of beta-synuclein neuroprotection might involve direct interactions between beta-synuclein and Akt and suggest that this signaling pathway could be a potential therapeutic target for neurological conditions associated with parkinsonism and alpha-synuclein aggregation.
引用
收藏
页码:23622 / 23629
页数:8
相关论文
共 48 条
[1]   A-synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells [J].
Ahn, BH ;
Rhim, H ;
Kim, SY ;
Sung, YM ;
Lee, MY ;
Choi, JY ;
Wolozin, B ;
Chang, JS ;
Lee, YH ;
Kwon, TK ;
Chung, KC ;
Yoon, SH ;
Hahn, SJ ;
Kim, MS ;
Jo, YH ;
Min, DS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (14) :12334-12342
[2]   PERIPHERAL NERVOUS SYSTEM-SPECIFIC GENES IDENTIFIED BY SUBTRACTIVE CDNA CLONING [J].
AKOPIAN, AN ;
WOOD, JN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (36) :21264-21270
[3]   Chronic systemic pesticide exposure reproduces features of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
MacKenzie, G ;
Garcia-Osuna, M ;
Panov, AV ;
Greenamyre, JT .
NATURE NEUROSCIENCE, 2000, 3 (12) :1301-1306
[4]   Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3β in the regulation of HSF-1 activity [J].
Bijur, GN ;
Jope, RS .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (06) :2401-2408
[5]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[6]  
Buchman VL, 1998, J NEUROSCI, V18, P9335
[7]  
Cohen G, 2000, ANN NY ACAD SCI, V899, P112
[8]   Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease [J].
Conway, KA ;
Harper, JD ;
Lansbury, PT .
NATURE MEDICINE, 1998, 4 (11) :1318-1320
[9]   β-synuclein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxydopamine-induced caspase 3 activation -: Cross-talk with α-synuclein and implication for Parkinson's disease [J].
da Costa, CA ;
Masliah, E ;
Checler, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (39) :37330-37335
[10]   Cellular survival: a play in three Akts [J].
Datta, SR ;
Brunet, A ;
Greenberg, ME .
GENES & DEVELOPMENT, 1999, 13 (22) :2905-2927